Interdisciplinarity in Secondary School Education: a Study and Research path
Abstract
We start from the hypothesis that the school separation between disciplines hinders inquiry-based teaching. Creating interdisciplinary environments facilitates this approach when disciplinary content is utilized in the study of problematic issues, surpassing the limitations of school organization by subjects. We investigate this conjecture through the proposal of study and research paths (SRP) taking into consideration the Anthropological Theory of the Didactic. We present an SRP on the evolution of COVID-19 implemented over two consecutive years in the 4th year of Spanish secondary school education, through collaborative work between the subjects of Mathematics, Technology, Biology, and Communication. The results indicate that the interdisciplinary environment fosters inquiry dynamics, but for it to be sustainable, it is crucial to preserve spaces for disciplinary work.
Keywords
Interdisciplinarity, Modelling, Study and research paths, Secondary school, PandemicsReferences
Artigue, M. (1988). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281-308. https://revue-rdm.com/1988/ingenierie-didactique-2
Artigue, M. (2014). Didactic engineering in mathematics education. En S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 159-162). Springer. https://doi.org/10.1007/978-94-007-4978-8_44
Barquero, B. y Bosch, M. (2015). Didactic engineering as a research methodology: From fundamental situations to study and research paths. En A. Watson y M. Ohtani (Eds.), Task design in mathematics education: An ICMI study 22 (pp. 249-272). Springer. https://doi.org/10.1007/978-3-319-09629-2_8
Barquero, B., Bosch, M., Florensa, I. y Ruiz-Munzón, N. (2021). Study and research paths in the frontier between paradigms. International Journal of Mathematical Education in Science and Technology, 53(5), 1213-1229. https://doi.org/10.1080/0020739X.2021.1988166
Blum, W. y Niss, M. A. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects? State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/bf00302716
Blum, W., Galbraith, P., Henn, H.-W. y Niss, M. (Eds.) (2007). Modelling and applications in mathematics education: The 14th ICMI study (vol. 10). Springer. https://doi.org/10.1007/978-0-387-29822-1
Bosch, M. (2018). Study and research paths: a model for inquiry. En B. Sirakov, P. N. De Souza y M. Viana (Eds.), Proceedings of the International Congress of Mathematicians (ICM 2018) (pp. 4015-4035). World Scientific Publishing. https://doi.org/10.1142/9789813272880_0210
Bosch, M., Chevallard, Y., García, F. J. y Monaghan, J. (2020). Working with the anthropological theory of the didactic in mathematics education. A comprehensive casebook. Routledge. https://doi.org/10.4324/9780429198168
Bosch, M. y Winsløw, C. (2016). Linking problem solving and learning contents: the challenge of self-sustained study and research processes. Recherches en Didactique des Mathematiques, 35(3), 357-401. https://static-curis.ku.dk/portal/files/161008268/BoschWinslow_RDM2016.pdf
Broggy, J., O’Reilly, J. y Erduran, S. (2017). Interdisciplinarity and science education. En K. Taber y B. Akpan (Eds.), Science education. New directions in mathematics and science education (pp. 81-90). Sense Publishers. https://doi.org/10.1007/978-94-6300-749-8_6
Cai, J., Cirillo, M., Pelesko, J. A., Ferri, R. B., Borba, M. D., Geiger, V., Stillman, G. A., English, L. D., Wake, G. y Kaiser, G. (2014). Mathematical modeling in school education: Mathematical, cognitive, curricular, instructional and teacher educational perspectives. En P. Liljedahl, S. Oesterle y C. Nicol (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (pp. 145-172). Springer. http://www.pme38.com/wp-content/up
loads/2014/05/RF-Cai-et-al.pdf
Chevallard, Y. (2002). Organiser l’étude: 3. Ecologie & régulation. Actes de la XIe École d’Été de Didactique des Mathématiques (pp. 41-56). La Pensée Sauvage.
Chevallard, Y. (2013). Enseñar matemáticas en la sociedad de mañana: alegato a favor de un contraparadigma emergente. Journal of Research in Mathematics Education, 2(2), 161-182. https://doi.org/10.4471/redimat.2013.26
Chevallard, Y. y Bosch, M. (2020). Anthropological theory of the didactic (ATD). En S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 53-61), Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_100034
Choi, B. C. y Pak, A. W. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine. Medicine Clinique et Experimentale, 29(6), 351-364. https://pubmed.ncbi.nlm.nih.gov/17330451/
Cunningham, E., Smyth, B. y Greene, D. (2021). Collaboration in the time of COVID: a scientometric analysis of multidisciplinary SARS-CoV-2 research. Humanities & Social Sciences Communications, 8(1). https://doi.org/10.1057/s41599-021-00922-7
Domènech-Casal J., Lope, S. y Mora, L. (2019). Qué proyectos STEM diseña y qué dificultades expresa el profesorado de secundaria sobre Aprendizaje Basado en Proyectos. Eureka, 16(2), 1-16. https://doi.org/10.25267/rev_eureka_ensen_divulg_cienc.2019.v16.i2.2203
Domènech-Casal, J. (2022). Situacions d’Aprenentatge. Idees per al desplegament curricular de les ciències. Ciències: Revista del Professorat de Ciències de Primària i Secundaria, (45), 20-32. https://doi.org/10.5565/rev/ciencies.469
Elsner, J., Sadler, T., Kirk, E., Rawson, R., Friedrichsen, P. y Ke, L. (2023). Using multiple models to learn about COVID-19 breadcrumb. The Science Teacher, 90(3), 40-45.
English, L. D. (2008). Interdisciplinary problem solving: A focus on engineering experiences. En M. Goos, R. Brown y K. Makar (Eds.), Proceedings of the 31st Annual Conference of the Mathematics Education Research Group of Australia (pp. 187-194). Mathematics Education Research Group of Australasia.
English, L. D. (2009) Promoting interdisciplinarity through mathematical modelling. ZDM Mathematics Education, 41(1-2), 161-181. https://doi.org/10.1007/s11858-008-0106-z
English, L. D. y Watters, J. J. (2005). Mathematical modelling in the early school years. Mathematics Education Research Journal, 16(3), 58-79. https://doi.org/10.1007/bf03217401
Fidalgo-Neto, A., Lopes, R., Magalhães, J., Pierini, M. y Alves, L. (2014). Interdisciplinarity and teacher education: The teacher’s training of the secondary school in Rio de Janeiro-Brazil. Creative Education, 5(4), 262-272. https://doi.org/10.4236/ce.2014.54035
García, F. J., Barquero, B., Florensa, I. y Bosch, M. (2019). Diseño de tareas en el marco de la teoría antropológica de lo didáctico. Avances de Investigación en Educación Matemática, (15), 75-94. https://doi.org/10.35763/aiem.v0i15.267
Gazzola, M. P., Otero, M. R. y Llanos, V. C. (2021). Evolution of a teacher-researcher while developing a co-disciplinary study and research path through five implementations. En B. Barquero, I, Florensa, P. Nicolás, N. Ruiz-Munzón (Eds.), Extended Abstracts Spring 2019 (pp. 21-28). Springer International Publishing. https://doi.org/10.1007/978-3-030-76413-5_3
Ghisla, G., Bausch, L. y Bonoli, L. (2010). Interdisciplinarity in Swiss schools: A difficult step into the future. Issues in Integrative Studies, 28(28), 295-331. https://interdisciplinarystudies.org/wp-con
tent/issues/vol28_2010/11_Vol_28_pp_295_331.pdf
Hasni, A., Lenoir, Y. y Alessandra, F. (2015). Mandated interdisciplinarity in secondary school: the case of science, technology, and mathematics teachers in Québec. Issues in Interdisciplinary Studies, 33(33), 144-180. https://eric.ed.gov/?id=EJ1117890
Houston, K. (2009). How to think Like a mathematician: A companion to undergraduate mathematics. Cambridge University Press. https://doi.org/10.1017/CBO9780511808258
Jefatura del Estado (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. Boletín Oficial del Estado, 340, 122868-122953. https://www.boe.es/eli/es/lo/2020/12/29/3
Jessen, B. (2014). How can study and research paths contribute to the teaching of mathematics in an interdisciplinary setting? Annales de Didactiques et de Sciences Cognitives, 19(1), 199-224. http://turing.scedu.umontreal.ca/annales/documents/volume %2019/10Jessen.pdf
Klein, J. T. (1990). Interdisciplinarity: history, theory, and practice. Wayne State University Press.
Ledder, G. y Homp, M. (2021). Using a COVID-19 model in various classroom settings to assess effects of interventions. PRIMUS, 32(2), 278-297. https://doi.org/10.1080/10511970.2020.1861143
Lenoir, Y. y Hasni, A. (2016). Interdisciplinarity in primary and secondary school: Issues and perspectives. Creative Education, 7(16), 2433-2458. https://doi.org/10.4236/ce.2016.716233
Maass, K., Artigue, M., Burkhardt, H., Doorman, M., English, L. D., Geiger, V., Krainer, K., Potari, D. y Schoenfeld, A. (2022). Mathematical modelling - a key to citizenship education. En N. Buchholtz, B. Schwarz y K. Vorhölter (Eds.), Initiationen Mathematikdidaktischer Forschung: Festschrift zum 70. Geburtstag von Gabriele Kaiser (pp. 31-50). Springer. https://doi.org/10.1007/978-3-658-36766-4_2
Michelsen, C. y Sriraman, B. (2009). Does interdisciplinary instruction raise students’ interest in mathematics and the subjects of the natural sciences? ZDM Mathematics Education, 41(1-2), 231-244. https://doi.org/10.1007/s11858-008-0161-5
Ortega-Torres, E. y Moncholí Pons, V. (2021). «Expliquem l’Albufera»: transformar una salida de campo en un proyecto interdisciplinar. Enseñanza de las Ciencias, 39(2), 241-252. https://doi.org/10.5565/rev/ensciencias.3241
Palmer, C. L. (1999). Structures and strategies of interdisciplinary science. Journal of the American Society for Information Science, 50(3), 242-253. https://doi.org/10.1002/(sici)1097-4571(1999)50:3<242::aid-asi7>3.0.co;2-7
Parra, V. y Otero, M. R. (2018). Antecedentes de los recorridos de estudio e investigación (REI): características y génesis. Revista Electrónica de Investigación en Educación en Ciencias, 13(2), 1-18. https://doi.org/10.54343/reiec.v13i2.239
Rasmussen, K. (2016). The direction and autonomy of interdisciplinary study and research paths in teacher education. Journal of Research in Mathematics Education, 5(2), 158-179. https://doi.org/10.17583/redimat.2016.1753
Ríordáin, M. N., Johnston, J. y Walshe, G. (2016). Making mathematics and science integration happen: Key aspects of practice. International Journal of Mathematical Education in Science and Technology, 47(2), 233-255. https://doi.org/10.1080/0020739X.2015.1078001
Sala, G., Barquero, B. y Font, V. (2020). Modelización e indagación en la propuesta de un REI codisciplinar de matemáticas e historia. Educação Matemática Pesquisa, 22(4), 546-562. https://doi.org/10.23925/1983-3156.2020v22i4p546-562
Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., Espeland, W., Kay, J., Lo Piano, S., Mayo, D., Pielke, R., Portaluri, T., Porter, T., Puy, A., Rafols, I., Ravetz, J., Reinert, E., Sarewitz, D., Stark, P., ..., Vineis, P. (2020). Five ways to ensure that models serve society: a manifesto. Nature, 582(7813), 482-484. https://doi.org/10.1038/d41586-020-01812-9
Sanders, M. H. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26. https://vtechworks.lib.vt.edu/bitstream/10919/51616/1/STEMmania.pdf
Sawada, Y. (2022). Proposal for teaching mathematical modelling using COVID-19 as an example of an infectious disease epidemic: The case of Japan in the corona vortex. Contemporary Mathematics and Science Education, 3(2), ep22017. https://doi.org/10.30935/conmaths/12363
Toma, R. B. y García-Carmona, A. (2021). «De STEM nos gusta todo menos STEM». Análisis crítico de una tendencia educativa de moda. Enseñanza de las Ciencias, 39(1), 65-80. https://doi.org/10.5565/rev/ensciencias.3093
Trelles-Zambrano, C., Toalongo, X. y Alsina, Á. (2022). Una actividad de modelización matemática en primaria con datos auténticos de la COVID-19. Enseñanza de las Ciencias, 40(2), 193-213. https://doi.org/10.5565/rev/ensciencias.3472
Tonnetti, B. y Lentillon-Kaestner, V. (2023). Teaching interdisciplinarity in secondary school: A systematic review. Cogent Education, 10(1). https://doi.org/10.1080/2331186X.2023.2216038
Winsløw, C., Matheron, Y. y Mercier, A. (2013). Study and research courses as an epistemological model for didactics. Educational Studies in Mathematics, 83(1), 267-284. https://doi.org/10.1007/s10649-012-9453-3
Published
Downloads
Copyright (c) 2024 Susana Vásquez Elias, Berta Barquero Farràs, Marianna Bosch Casabò
This work is licensed under a Creative Commons Attribution 4.0 International License.