Solution of a Generalisation Problem by Students with Autism Spectrum Disorder

Authors

Abstract

This study addresses the generalization process manifested by four 11 or 12-year-old children with autism spectrum disorder during a session of a problem-solving workshop in which several types of representation are used: manipulative ones, pictograms and tables. The videorecording of the session and the productions of the participants are analysed according to the levels of generalisation of functional relationships. The children’s resolution process shows gaps regarding terms and levels, corresponding to functional relationships or representational changes. Using different types of representation has shown to influence the students’ generalisation process, which reaches higher levels when tables are used.

Keywords

Generalisation, Problem-solving, Autism spectrum disorder, TEACCH material, Elementary Education

References

American Psychiatric Association, APA (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). DSM-5. American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596

Ayabe, H., Manalo, E., Fukuda, M. y Sadato, N. (2021). What diagrams are considered useful for solving mathematical word problems in Japan? En A. Basu, G. Stapleton, S. Linker, C. Legg, E. Manalo y P. Viana (Eds.), Diagrammatic Representation and Inference. Diagrams. Lecture Notes in Computer Science, 12909. Springer. https://doi.org/10.1007/978-3-030-86062-2_8

Bae, Y. S., Chiang, H. M. y Hickson, L. (2015). Mathematical word problem solving ability of children with Autism Spectrum Disorder and their typically developing peers. Journal of Autism and Developmental Disorders, 45(7), 2200-2208. https://doi.org/10.1007/s10803-015-2387-8

Blanton, M. L. (2008). Algebra and the Elementary Classroom: Transforming Thinking, Transforming Practice. Heinemann.

Blanton, M., Brizuela, B., Gardiner, A. M., Sawrey, K. y Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalising functional relationships. Journal for Research in Mathematic Education, 46, 511-558. https://doi.org/10.5951/jresematheduc.46.5.0511

CAST (2018). Universal Design for Learning Guidelines version 2.2. CAST.

Carraher, D., Martinez, M. y Schliemann, A. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22. https://doi.org/10.1007/s11858-007-0067-7

Chico, A., Gómez-Hurtado, I. y Climent, N. (2022). Problem-solving by students with Asperger’s Syndrome. En J. Hodgen, E. Geraniou, G. Bolondi y F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 1-8). Free University of Bozen-Bolzano / ERME.

Cleary, S. y Barnett J. H. (2015). Using research-based strategies to teach algebraic problem solving skills to students with autism spectrum disorder. INQUIRE: An Undergraduate Research Journal, 1(5), 57-77.

Cox, S. K. y Root, J. R. (2020). Modified schema-based instruction to develop flexible mathematics problem solving strategies for students with autism spectrum disorder. Remedial and Special Education, 41, 139-151. https://doi.org/10.1177/0-0741932518792660

Delisio, L., Bukaty, C. y Taylor, M. (2018). Effects of a graphic organizer intervention package on the Mathematics word problem solving abilities of students with Autism Spectrum Disorders. The Journal of Special Education Apprenticeship, 7(2), 1-22.

Duval, R. (2016). Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas. En R. Duval y A. Sáenz-Ludlow (Eds.), Comprensión y aprendizaje en matemáticas: Perspectivas semióticas seleccionadas (pp. 61-94). Énfasis.

Gevarter, C., Bryant, D. P., Bryant, B., Watkins, L., Zamora, C. y Sammarco, N. (2016). Mathematics interventions for individuals with Autism Spectrum Disorder: A systematic review. Journal of Autism and Developmental Disorders, 3, 224-238. https://doi.org/10.1007/s40489-016-0078-9

Goñi-Cervera, J., Cañadas, M. C. y Polo-Blanco, I. (2022). Generalisation in students with autism spectrum disorder: an exploratory study of strategies. ZDM Mathematics Education, 54, 1333-1347. https://doi.org/10.1007/s11858-022-01415-w

Hunter, J. y Miller, J. (2022). The use of cultural contexts for patterning tasks: supporting young diverse students to identify structures and generalise. ZDM Mathematics Education, 54, 1349-1362. https://doi.org/10.1007/s11858-022-01386-y

Klaren, M., Pepin, B. y Thurlings, M. (2017). Autism and mathematics education. En A. Bikner-Ahsbahs, M. Haspekian, A. Bakker y M. Maracci (Eds.), Proceedings of the CERME 10 (pp. 629-636). CERME.

Pinto, E. y Cañadas, M. C. (2021). Generalizations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal, 33(1), 113-134. https://doi.org/10.1007/s13394-019-00300-2

Radford, L. (2002). The seen, the spoken and the written: A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14-23.

Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, 52, de 2 de marzo de 2022.

Root, J., Henning, B. y Boccumini, L. (2018). Teaching Students with Autism and Intellectual Disability to Solve Algebraic Word Problems. Education and Training in Autism and Developmental Disabilities, 53(3), 325-338. https://www.jstor.org/stable/10.2307/26563472

Root, J. R., Ingelin, B. y Cox, S. K. (2021). Teaching mathematical word problem solving to students with autism spectrum disorder: a best-evidence synthesis. Education and Training in Autism and Developmental Disabilities, 56(4), 420-436. https://doi.org/10.1177/00400599221116821.

Rose, D. H. y Gravel, J. W. (2010). Universal Design for Learning. En E. Baker, P. Peterson, y B. McGaw (Eds.), International Encyclopedia of Education (3.ª ed., pp. 119-124). Elselvier. https://doi.org/10.1016/B978-0-08-044894-7.00719-3

Schoppler, E., Mesibov, G. y Hearsey, K. (2013). Structured teaching in the TEACCH system. En E. Schoppler y G. Mesibov (Eds.), Learning and Cognition in Autism: Current Issues in Autism (pp. 243-268). University of North Carolina. https://doi.org/10.1007/978-1-4899-1286-2_13

Steele, D. y Johanning, D. (2004). A schematic-theoretic view of problem solving and development of algebraic thinking. Educational Studies in Mathematics, 57, 65-90. https://doi.org/10.1023/B:EDUC.0000047054.90668.f9

Stephens, A., Fonger, N., Strachota, S., Isler, I., Blanton, M., Knuth, E. y Murphy-Gardiner, A. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143-166. https://doi.org/10.1080/10986065.2017.1328636

Strachota, S. (2016). Conceptualizing generalization. IMVI Open Mathematical Education Notes, 6(1), 41-55.

Stylianou, D. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: towards an organizing scheme. Educational Studies in Mathematics,76, 265-280. https://doi.org/10.1007/s10649-010-9273-2

Whitby, P. J. (2013). The effects of solve it! On the mathematical word problem solving ability of adolescents with autism spectrum disorder. Focus on Autism and Other Developmental Disabilities, 28(2), 78-88. https://doi.org/10.1177/1088357612468764

Published

2024-11-04

Downloads

Download data is not yet available.