A Mathematical Modeling Activity in Elementary School with Authentic Data about COVID-19
Abstract
The aim of this study is to analyze a mathematical modeling task developed by students in the sixth grade of primary education (11-12 years old) based on a model-eliciting activity with real statistical data about COVID-19, which was implemented online during the period of confinement in Spain. Based on a multiple case study, the final products generated by the students are analyzed. The results show that, although not all students are able to develop a model, those who do are able to use intuitive concepts of statistics and probability that are outside the regular curriculum. It is concluded that these activities develop mathematical skills but require pedagogical knowledge to incorporate them frequently and successfully into teaching practice.
Keywords
Mathematical modeling, Model-eliciting activities, Primary education, Statistical education, TransnumerationReferences
Albarracín, L. (2017). Los problemas de Fermi como actividades para introducir la modelización. Modelling in Science Education and Learning, 10(2), 117-135. https://doi.org/10.4995/msel.2017.7707
Albarracín, L. y Gorgorió, N. (2020). Mathematical modeling projects oriented towards social impacts as generators of learning opportunities: a case study. Mathematics, 8(20), 1-20. https://doi.org/10.3390/math8112034
Alsina, C., García-Raffi, L., Gómez, J. y Romero, S. (2007). Modelling in science education and learning. SUMA (54), 51-53.
Banco Mundial (mayo de 2020). Bancomundial.org. Obtenido de Covid-19: Impacto en la educación y respuestas de política pública: https://openknowledge.worldbank.org/bitstream/handle/10986/33696/148198SP.pdf?sequence=6&isAllowed=y
Barquero, B., Bosch, M. y Gascón, J. (2014). Incidencia del aplicacionismo en la integración de la modelización matemática en la enseñanza universitaria de las ciencias experimentales. Enseñanza de las Ciencias, 32(1), 83-100. https://doi.org/10.5565/rev/ensciencias.933
Bliss, K. y Libertini, J. (2019). What is mathematical modeling? En S. Garfunkel y M. Montgomery (Eds.), Guidelines for assessment & instruction in mathematical modeling education (pp. 7-21). COMAP, Inc.
Blum, W. (2015). Quality Teaching of Mathematical Modelling: What Do We Know, What Can We Do? Proceeding of the 21th International Congress on Mathematical Education (pp. 73-96). Nueva York: Springer https://doi.org/10.1007/978-3-319-12688-3_9
Blum, W. y Borromeo, R. (2009). Mathematical Modelling: Can I Be Taught And Learn? Journal of Mathematical Modeling and Application, 1(1), 45-58.
Blum, W. y Leiβ, D. (2007). How do students and teachers deal with modelling problems? En C. Haines, P. Galbraith, W. Blum y S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 222-231). Horwood Publishing. https://doi.org/10.1533/9780857099419.5.221
Borromeo, R. (2010). On the influence of mathematical thinking styles on learners’ modelling behaviour. Journal für Mathematik didaktik, 31(1), 99-118. https://doi.org/10.1007/s13138-010-0009-8
Chan, C. (2010). Tracing primary 6 students model development within the mathematical modeling process. Journal of Mathematical Modelling and Application, 1(3), 40-57.
Chick, H. (2004). Tools for transnumeration: Early stages in the art of data representation. En Mathematics Education Research: Innovation, Networking, Opportunity. Proceedings of the 26th Annual Conference of the Mathematics Education Research (pp. 207-214). MERGA.
Cifuentes-Faura, J. (2020). Consecuencias en los niños del cierre de escuelas por Covid-19: El papel del Gobierno, profesores y padres. Revista Internacional de Educación para la Justicia Social, 9(3), 1-12.
English, L. D. (2006). Mathematical Modeling in the Primary School: Children’s construction of a consumer guide. Educational Studies in Mathematics, 63, 303-323. Springer. https://doi.org/10.1007/s10649-005-9013-1
English, L. D. (2010). Modeling with Complex Data in the Primary School. En R. Lesh, P. Galbraith, C. Haines y A. Hurford, Modelling Students’ Mathematical Modeling Competencies (pp. 287-300). Springer. https://doi.org/10.1007/978-1-4419-0561-1_25
English, L. D. (2014). Promoting statical literacy through data modelling in the early school years. En E. Chernoff y B. Sriraman (Eds.), Probalistic thinking: presenting plural perspectives (pp. 441-458). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7155-0_23
English, L. D. y Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education, 50, 103-115. https://doi.org/10.1007/s11858-017-0896-y
English, L. D. y Watters, J. (2005). Mathematical Modelling in the Early School Years. Mathematics Education Research Journal, 16(3), 58-79. https://doi.org/10.1007/bf03217401
Estrella, S. y Olfos, R. (2015). Transnumeración de los datos: el caso de las tablas de frecuencia. Conferencia Interamericana de Educación Matemática (pp. 1-7). México.
EU Kids Online. (2018). Los niños y niñas de la brecha digital en España. Madrid: Unicef.
Ferrando, I. y Navarro, B. (2015). Un viaje de fin de curso y tres tareas de modelización. Una experiencia en un aula de secundaria. Modelling in Science Education and Learning, 8(2), 79-92. https://doi.org/10.4995/msel.2015.3681
Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M. y Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report. American Statistical Association.
Gallart, C., Ferrando, I. y García-Raffi, L. (2015). Análisis competencial de una tarea de modelización abierta. Números, 88, 93-103.
Gallart, C., García-Raffi, L. y Ferrando, I. (2019). Modelización matemática en la educación secundaria: manual de uso. Modelling in Science Education and Learning, 12(1), 71-86. https://doi.org/10.4995/msel.2019.10955
Groth, R. (2015). Research commentary: Working at the boundaries of mathematics education and statistics education communities of practice. Journal for Research in Mathematics Education, 46(1), 4-16. https://doi.org/10.5951/jresematheduc.46.1.0004
Gundermann-Kröll, H. (2013). El método de los estudios de caso. En M. L. Tarrés (Ed.), Observar, escuchar y comprender sobre la tradición cualitativa en la Investigación (pp. 231-264). El Colegio de México-FLACSO.
Hernandez-Martínez, P. y Vos, P. (2018). «Why do I have to learn this?» A case study on estudents’ experiences of the relevance of mathematical modelling activities. ZDM Mathematics Education, 50, 245-257. https://doi.org/10.1007/s11858-017-0904-2
Instituto de Estadística de Cataluña (24 de febrero de 2020). idescat.cat. https://www.idescat.cat/indicadors/?id=anuals&n=13300&lang=es Visitada el 3-06- 2020.
Instituto Nacional de Estadística. (2019). Encuesta sobre equipamiento y uso de tecnologías de información y comunicación en los hogares. Instituto Nacional de Estadística. https://www.ine.es/prensa/tich_2019.pdf
Langrall, C., Nisbet, S., Mooney, E. y Jansem, S. (2011). The role of context expertise when comparing data. Mathematical Thinking and Learning, 13(1-2), 47-67. https://doi.org/10.1080/10986065.2011.538620
Lesh, R. y Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning and problem solving. En R. Lesh y H. Doerr (Eds.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (pp. 3-34). Lawrence Erlbaum Associates.
Lesh, R. y Zawojewski, J. (2007). Problem solving and modeling. En F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 763-804). CT: IAP.
Lesh, R., Hoover, M., Hole, B., Kelly, A. y Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. En A. Kelly, R. Lesh, A. Kelly y R. Lesh (Eds.), Handbook of Research Desing in Mathematics and Science Education (pp. 591-645). Lawrence Erlbaum Associates.
López-Noguero, F. (2002). El análisis de contenido como método de investigación. XXI. Revista de Educación, 4, 167-179.
Makar, K. (2016). Developing young children’s emergent inferential practices in statistics. Mathematical Thinking and Learning, 16(1), 1-24. https://doi.org/10.1080/10986065.2016.1107820
Makar, K. y Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82-105.
McMillan, J. y Schumacher, S. (2005). Investigación educativa. Pearson Educación S. A.
Mercado-Sánchez, G. (2020). Las matemáticas en los tiempos del coronavirus. Educación Matemática, 32(1), 7-10. https://doi.org/10.24844/EM3201.01
Moore, D. (1990). Uncertainly. En L. Steen (Ed.), On the shoulders of giants: New approaches to numeracy (pp. 95-137). National Academy Press.
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. NCTM.
National Governors Association Center for Best Practices: Council of Chief State School Officers. (2010). Common Core State Standars for Mathematics.
Ng, K. (2013). Initial perspectives of teacher professioinal development on mathematical modeling in Singapore: A framework. En G. Stillman, G. Kaiser, W. Blum y J. Brown (Eds.), Teaching Mathematical Modeling: Connecting to Research and Practice. International Perspectives on the Teaching and Learning of Mathematical Modeling (pp. 427-436). Springer. https://doi.org/10.1007/978-94-007-6540-5_36
Ruiz-Higueras, L., García, F. y Lendínez, E. (2013). La actividad de modelización en el ámbito de las relaciones espaciales en la Educación Infantil. Edma 0-6: Educación Matemática en la Infancia, 2(1), 95-118. https://doi.org/10.24197/edmain.1.2013.95-118
Rule, P. y John, V. (2015). A Necessary Dialogue: Theory in Case Study Research. International Journal of Qualitative Methods, 14(4), 1-11. https://doi.org/10.1177/1609406915611575
Sol, M., Giménez, J. y Rosich, N. (2011). Trayectorias modelizadoras en la ESO. Modelling in Science Education and Learning, 4(27), 329-343. https://doi.org/10.4995/msel.2011.3100
Trelles, C. y Alsina, À. (2017). Nuevos Conocimientos para una Educación Matemática del S. XXI: panorama internacional de la modelización en el currículo. Unión Revista Iberoamericana de Educación Matemática, 51, 140-163.
Trelles, C., Toalongo, X., Alsina, À. y Gonzales, N. (2019). La modelización matemática a través de las actividades generadoras de modelos: una propuesta para el aula de secundaria. Épsilon-Revista de Educación Matemática, (102), 43-59.
Unesco (2020). Enseñar en tiempos de COVID-19. Una guía teórico-práctica para docentes. París: Unesco.
Watson, J. y English, L. D. (2015). Introducing the practice of statistics: Are we environmentally friendly? Mathematics Education Research Journal, 27(4), 585-613. https://doi.org/10.1007/s13394-015-0153-z
Wess, R. y Greefrath, G. (2019). Professional competencies for teaching mathematical modelling - supporting the modelling-especific task competency of prospective teachers in the teaching laboratory. Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht University. https://hal.archives-ouvertes.fr/hal-02409039/document
Yin, R. K. (2018). Case study research and applications: design and methods. SAGE Publications, Inc. https://dugi-doc.udg.edu/handle/10256/20529
Published
Downloads
Copyright (c) 2022 César Trelles-Zambrano, Ximena Toalongo-Guamba, Ángel Alsina
This work is licensed under a Creative Commons Attribution 4.0 International License.