Effects of working with GeoGebra in the classroom on the affect-cognition relationship
Abstract
The rise of the use of technology in mathematics education, especially in the dynamic approach to geometry, requires well-founded empirical studies that inform its effective use in the classroom. This article responds to the demand for interventions that address the affective and cognitive dimensions, as well as the study of the relationship between them. Through a teaching experiment in two secondary school classes, the influence of GeoGebra in the development of students’ attitudes related to mathematics and mathematical competence is analysed. The quantitative analysis of the data shows a positive evolution in the studied variables, while the qualitative analysis reports on how this evolution took place, on the properties of the software that supported it and on the relationship between affective and cognitive constructs.
Keywords
Attitudes, Mathematical literacy, Affect-cognition, GeoGebra, Secondary educationReferences
Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes of conjecture generation in a dynamic geometry environment. ZDM Mathematics Education. Online First, 1-13. https://doi.org/10.1007/s11858-019-01046-8.
Bazán, J. (1997) Metodología estadística de construcción de pruebas. Una aplicación al estudio de actitudes hacia la matemática en la UNALM (tesis doctoral no publicada). UNALM, España.
Bray, A. y Tangney, B. (2017). Technology usage in mathematics education research - A systematic review of recent trends. Computers & Education, 114, 255-273. https://doi.org/10.1016/j.compedu.2017.07.004.
Costa, J. (2011). Plataforma de matematización en un entorno GeoGebra dentro de un planteamiento didáctico «desde abajo hacia arriba». Enseñanza de las Ciencias, 29(1), 101-114. https://doi.org/10.5565/rev/ec/v29n1.527.
DeBellis, V. A. y Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics, 63(2), 131-147. https://doi.org/10.1007/s10649-006-9026-4.
Di Martino, P. y Zan, R. (2010). «Me and maths»: Towards a definition of attitude grounded on students’ narratives. Journal of Mathematics Teacher Education, 13, 27-48. https://doi.org/10.1007/s10857-009-9134-z.
Drijvers, P. (2018). Empirical evidence for benefit? Reviewing quantitative research on the use of digital tools in mathematics education. En L. Ball, P. Drijvers, S. Ladel, H. S. Siller, M. Tabach, C. Vale (Eds), Uses of technology in primary and secondary mathematics education (pp. 161-175). Cham: Springer.
García, M. M. (2011). Evolución de actitudes y competencias matemáticas en estudiantes de secundaria al introducir GeoGebra en el aula (tesis doctoral no publicada). Universidad de Almería. http://funes.uniandes.edu.co/1768/2/Garcia2011Evolucion.pdf .
García, M. M. y Romero, I. M. (2020). Influencia de GeoGebra en las actitudes hacia las matemáticas de estudiantes de secundaria: diseño y validación de un cuestionario. En A. Codina y M. F. Moreno (Eds.), Investigaciones en Pensamiento Numérico y Algebraico: 2018 (pp. 83-100). Almería, España: Editorial de la Universidad de Almería.
Gómez Chacón, I. M. (2010). Actitudes de los estudiantes en el aprendizaje de la matemática con tecnología. Enseñanza de las Ciencias, 28(2), 227-244. https://doi.org/10.5565/rev/ec/v28n2.197.
Gómez-Chacón, I. M. (2011). Mathematics attitudes in computerized environments. A proposal using GeoGebra. En L. Bu y R. Schoen (Eds.), Model-centered learning: Pathways to mathematical understanding using GeoGebra (pp. 147-170). Rotterdam: Sense Publishers.
Gómez-Chacón, I. M. y Marbán, J. M. (2019). Afecto y conocimiento profesional docente en matemáticas. En E. Badillo, N. Climent, C. Fernández y M. T. González (Eds.), Investigación sobre el profesor de matemáticas: formación, práctica de aula, conocimiento y competencia profesional (pp. 397- 416). Salamanca: Ediciones Universidad Salamanca.
Gómez-Chacón, I. M., Romero, I. M. y García, M. M. (2016). Zig-zagging in geometrical reasoning in technological collaborative environments: a Mathematical Working Space-framed study concerning cognition and affect. ZDM, 48(6), 909-924. https://doi.org/10.1007/s11858-016-0755-2 .
Granberg, C. y Olsson, Y. (2015). ICT-supported problem solving and collaborative creative reasoning: Exploring linear functions using dynamic mathematics software. Journal of Mathematical Behavior, 37, 48-62. https://doi.org/10.1016/j.jmathb.2014.11.001.
Gresalfi, M. S. (2009). Taking up opportunities to learn: constructing dispositions in mathematics classrooms. The Journal of the Learning Sciences, 18(3), 327-369. https://doi.org/10.1080/10508400903013470.
Grootenboer, P. y Marshman, M. (2015). Mathematics, affect and learning. Singapur: Springer.
Hannula, M. S., Leder, G. C., Morselli, F., Vollstedt, M. y Zhang, Q. (Eds.) (2019). Affect and mathematics education. Cham: Springer.
Hannula, M., Pantziara, M. y Di Martino, P. (2018). Affect and mathematical thinking. Exploring developments, trends and future directions. En T. Dreyfus (Ed.), Developing research in mathematics education: twenty years of communication, cooperation, and collaboration in Europe (pp. 323-329). Abingdon, Oxon: Routledge.
Hoyles, C. y Lagrange, J. B. (2010). Mathematics education and technology: Rethinking the terrain. Nueva York: Springer.
Jaramillo, P. E. y Ruíz, M. (2010). El desarrollo de la autonomía: más allá del uso de las TIC para el trabajo independiente. Revista Colombiana de Educación, 58, 78-95. https://doi.org/10.17227/01203916.637.
Lupiáñez, J. L. y Rico, L. (2008). Análisis didáctico y formación inicial de profesores: competencias y capacidades en el aprendizaje de los escolares. PNA, 3(1), 35-48.
Molina, M., Castro, E., Molina, J. L. y Castro, E. (2011). Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las Ciencias, 29(1), 75-88. https://doi.org/10.5565/rev/ec/v29n1.435.
OECD (2010). PISA 2009 results: What students know and can do – Student performance in reading, mathematics and science (vol. I). París: OECD Publishing.
OECD (2017). Marco de evaluación y de análisis de PISA para el desarrollo: Lectura, matemáticas y ciencias (versión preliminar). París: OECD Publishing.
Rico, L. y Lupiáñez, J. L. (2008). Competencias matemáticas desde una perspectiva curricular. Madrid: Alianza Editorial.
Romero, I. M., García, M. M. y Codina, A. (2015). Developing mathematical competencies in secondary students by introducing dynamic geometry systems in the classroom. Eğitim ve Bilim, 40(177), 43-58. https://doi.org/10.15390/EB.2015.2640.
Roth, W. M. y Walshaw, M. (2019). Affect and emotions in mathematics education: Toward a holistic psychology of mathematics education. Educational Studies in Mathematics, 102(1), 111-125. https://doi.org/10.1007/s10649-019-09899-2.
Santos-Trigo, M. (2008). On the use of technology to represent and explore mathematical objects or problems dynamically. Mathematics and Computer Education, 42(2), 123-139.
Sinclair, N., Bussi, M. G. B., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A. y Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM, 48(5), 691-719. https://doi.org/10.1007/s11858-016-0796-6.
Sinclair, N. y Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135-150. https://doi.org/10.1080/14794800802233670.
Stolaki, A. y Economides, A. A. (2018). The creativity challenge game: An educational intervention for creativity enhancement with the integration of Information and Communication Technologies (ICTs). Computers & Education, 123, 195-211. https://doi.org/10.1016/j.compedu.2018.05.009.
Takaci, D., Stankov, G. y Milanovic, I. (2015). Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computers & Education, 82, 421-431. https://doi.org/10.1016/j.compedu.2014.12.002
Wassie, Y. A. y Zergaw, G. A. (2018). Capabilities and contributions of the dynamic math software, GeoGebra–A review. North American GeoGebra Journal, 7(1), 68-86.
Yoganci, S. (2018). A study on the views of graduate students on the use of GeoGebra in mathematics teaching. European Journal of Education Studies, 4(8), 63-78. https://doi.org/10.5281/zenodo.1272935
Zengìn, Y. (2017a). The potential of GeoGebra software for providing mathematical communication in the light of pre-service teachers’ views. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 11(1), 101-127.
Zengìn, Y. (2017b). The effects of GeoGebra software on preservice mathematics teachers’ attitudes and views toward proof and proving. International Journal of Mathematical Education in Science and Technology, 48(7), 1002-1022. https://doi.org/10.1080/0020739X.2017.1298855
Zetriuslita, Z., Nofriyandi, N. y Istikomah, E. (2020). The effect of Geogebra-assisted direct instruction on students’ self-efficacy and self-regulation. Infinity, 9(1), 41-48. https://doi.org/10.22460/infinity.v9i1.p41-48
Published
How to Cite
Downloads
Copyright (c) 2021 María del Mar García López, Isabel María Romero Albaladejo, Francisco Gil Cuadra

This work is licensed under a Creative Commons Attribution 4.0 International License.