La comprensión de estudiantes de primer año de universidad del concepto de concentración expresada en gramos por litro

Autores/as

  • Andrés Raviolo Universidad Nacional de Rio Negro
  • Nayla Traiman Schroh Universidad Nacional de Río Negro
  • Andrea Farré Universidad Nacional de Río Negro

Resumen

Se presenta una discusión en torno al aprendizaje del concepto de concentración de disoluciones en general y de concentración expresada en gramos por litro en particular. Distintos enfoques se han tenido en cuenta, incluyendo resultados del campo de la educación matemática. La problemática del aprendizaje del concepto de concentración en g/L no ha sido abordada con anterioridad. Se muestran y discuten los resultados obtenidos de la aplicación a 140 estudiantes argentinos de primer año de universidad, del cuestionario «Razonando con concentración gramos por litro» que indaga las relaciones lógico-matemáticas entre las variables m, V y Cg/L. Se analizan también las respuestas obtenidas en entrevistas, pensando en voz alta, sobre los ítems de este cuestionario realizadas a 18 estudiantes. De los resultados se desprende que más de la mitad de los estudiantes de primer año de universidad no poseen un conocimiento conceptual profundo de concentración en g/L. La principal dificultad yace en tareas de proporcionalidad inversa cuando deben relacionar cualitativamente la masa de soluto (extensiva) y la Cg/L (intensiva) para determinar qué disolución ocupa un menor volumen.

Palabras clave

Concentración disoluciones, g/L, Proporcionalidad, Aaprendizaje

Citas

Adadan, E. y Savasci, F. (2012). An analysis of 16-17-year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument. International Journal of Science Education, 34(4), 513-544. https://doi.org/10.1080/09500693.2011.636084

Anamuah-Mensah, J. (1986). Cognitive strategies used by chemistry students to solve volumetric analysis problems. Journal of Research in Science Teaching, 23, 759-769. https://doi.org/10.1002/tea.3660230902

Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18, 53-85. https://doi.org/10.1080/03057269008559981

Bakker, A., Groenveld, D., Wijers, M., Akkerman, S. y Gravemeijer, K. (2014). Proportional reasoning in the laboratory: An intervention study in vocational education. Educational Studies in Mathematics, 86(2), 211-221. https://doi.org/10.1007/s10649-012-9393-y

Bunce, D. M. y Cole, R. S. (Eds.) (2014). Tools of chemistry education research. ACS Symposium Series / American Chemical Society. https://doi.org/10.1021/bk-2014-1166.ch001

Calik, M. (2005). A cross-age study of different perspectives in solution chemistry from junior to senior high school. International Journal of Science and Mathematics Education, 3(4), 671-696. https://doi.org/10.1007/s10763-005-1591-y

Calik, M., Ayas, A. y Ebenezer, J. (2005). A review of solution chemistry studies: Insights into students’ conceptions. Journal of Science Education and Technology, 14(1), 29-50. https://doi.org/10.1007/s10956-005-2732-3

Charters, E. (2003). The use of think-aloud methods in qualitative research. An introduction to think-aloud methods. Brock Education Journal, 12(2), 68-82. https://doi.org/10.26522/brocked.v12i2.38

Cramer, K. y Post, T. (1993). Connecting research to teaching proportional reasoning. Mathematics Teacher, 86(5), 404-407. https://doi.org/10.5951/MT.86.5.0404

De Berg, K. (2012). A study of first-year chemistry students’ understanding of solution concentration at the tertiary level. Chemistry Education Research and Practice, 13, 8-16. https://doi.org/10.1039/c1rp90056k

Devetak, I., Vogrinc, J. y Glažar, S. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research Science Education, 39(2), 157-179. https://doi.org/10.1007/s11165-007-9077-2

Ferguson, R. (2007). Constructivism and social constructivism. En G. Bodner y M. Orgill, Theoretical Frameworks for Research in Chemistry and Science Education (pp. 27-47). Pearson Prentice Hall: Upper Saddle River, NJ. https://doi.org/10.1007/s10780-006-8399-8

Fernández, C. y Llinares, S. (2012). Características del desarrollo del razonamiento proporcional en la educación primaria y secundaria. Enseñanza de las Ciencias, 30(1), 129-142. https://doi.org/10.5565/rev/ec/v30n1.596

Gabel, D. y Bunce, D. (1994). Research on problems solving: chemistry. En D. L. Gabel (Ed.), Handbook of Research on Science Teaching and Learning (pp. 301-326). Nueva York: Macmillan.

Gabel, D. y Samuel, K. (1986). High school students’ ability to solve molarity problems and their analog counterparts. Journal of Research in Science Teaching, 23(2), 165-176. https://doi.org/10.1002/tea.3660230207

Gabel, D., Sherwood, R. y Enochs, L. (1984). Problem-solving skills of high school chemistry students. Journal of Research in Science Teaching, 21(2), 221-233. https://doi.org/10.1002/tea.3660210212

Herrington, D. y Daubenmire, P. (2014). Using interviews in CER projects: options, considerations, and limitations. En D. Bunce y R. Cole, Tools of Chemistry Education Research (pp. 31-59). Washington DC: ACS Symposium Series / American Chemical Society. https://doi.org/10.1021/bk-2014-1166.ch003

Heyworth, R. (1999). Procedural and conceptual knowledge of expert and novice students for the solving of a basic problem in chemistry. International Journal of Science Education, 21(2), 195-211. https://doi.org/10.1080/095006999290787

Hilton, A., Hilton, G., Dole, S. y Goos, M. (2013). Development and application of a two-tier diagnostic instrument to assess middle-years students’ proportional reasoning. Mathematics Education Research Journal, 25(4), 523-545. https://doi.org/10.1007/s13394-013-0083-6

Johnstone, A. (1983). Chemical education research: Facts, findings, and consequences. Journal of Chemical Education, 60(11), 968-971. https://doi.org/10.1021/ed060p968

Lamon, S. (2007). Rational numbers and proportional reasoning: towards a theoretical framework for research. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: a project of the National Council of Teachers of Mathematics (pp. 629-667). Charlotte: Information Age Publishing.

Lutter, J., Hale, L. y Shultz, G. (2019). Unpacking graduate student’s knowledge for teaching solution chemistry concepts. Chemistry Education Research and Practice, 20, 258-269. https://doi.org/10.1039/c8rp00205c

Merriam, S. et al. (2002). Qualitative research in practice. San Francisco, CA: Wiley.

Napal, M., Echeverría, J., Zulet, A., Santos, L. y Ibarra, J. (2018). Estrategias del alumnado de Educación Secundaria para estimar la densidad. Enseñanza de las Ciencias, 36(1), 61-78. https://doi.org/10.5565/rev/ensciencias.2215

Niaz, M. (1995). Progressive transitions from algorithmic to conceptual understanding in student ability to solve chemistry problems: A Lakotasian interpretation. Science Education, 79, 19-36. https://doi.org/10.1002/sce.3730790103

Novik, S. y Menis, J. (1976). A study of student perceptions of the mole concept. Journal of Chemical Education, 53(11), 720-722. https://doi.org/10.1021/ed053p720

Park, J. S., Park, J. H. y Kwon, O. N. (2010). Characterizing the proportional reasoning of middle school students. Seoul National University Journal of Education Research, 19(5), 119-144.

Pinarbasi, T. y Canpolat, N. (2003). Students’ understanding of solution chemistry concepts. Journal of Chemical Education, 80(11), 1328-1332. https://doi.org/10.1021/ed080p1328

Ramful, A. y Narod, F. (2014). Proportional reasoning in the learning of chemistry: levels of complexity. Mathematics Education Research Journal, 26, 25-46. https://doi.org/10.1007/s13394-013-0110-7

Ryan, S. (2012). Student ratio use and understanding of molarity concepts within solutions chemistry (tesis doctoral). Chicago: University of Illinois.

Sanmartí, N. (2020) ¿Qué tenemos que aprender hoy? Fundación Santillana. https://www.youtube.com/watch?v=raxDh7Bw8_s

Smith, K. y Metz, P. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233-235. https://doi.org/10.1021/ed073p233

Stavy, R. (1981). Teaching inverse functions via the concentrations of salt water solution. Archives de Psychologie, 49, 267-287.

Stavy, R. y Tirosh, D. (1996). Intuitive rules in science and mathematics: the case of «more of A-more of B». International Journal of Science Education, 18(6), 653-667. https://doi.org/10.1080/0950069960180602

Talanquer, V. (2006). Commonsense chemistry: a model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811-816. https://doi.org/10.1021/ed083p811

Talanquer, V. (2014). Chemistry education: ten heuristics to tame. Journal of Chemical Education, 91, 1091-1097. https://doi.org/10.1021/ed4008765

Wink, D. y Ryan, S. (2019). The logic of proportional reasoning and its transfer into chemistry. En It’s Just Math: Research on Students’ Understanding of Chemistry and Mathematics. ACS Symposium Series. https://doi.org/10.1021/bk-2019-1316.ch010

Publicado

2022-03-03

Descargas

Los datos de descargas todavía no están disponibles.