First-year university students’ understanding of the concept of concentration expressed in grams per liter
Abstract
As an approach to the learning of the concentration of solution concept, the article discusses literature from different perspectives, including results from the mathematics education field. Main focus is on the concentration in the concept of grams per liter. Learning the concept of concentration in g/L as a problem has not been previously addressed in the literature. The research applied the «Reasoning with concentration grams per liter» questionnaire to 140 Argentinian freshmen students. The questionnaire asks students to think about logical-mathematical relationships between the variables m, V and Cg/L. A discussion from questionnaire results follows. In addition, 18 students participated in think-aloud interviews about the items of this questionnaire. Results from the questionnaire and the interviews show that more than half of the freshmen students do not have a deep conceptual knowledge about concentration in g/L. The main difficulty lies in inverse proportionality tasks: when students must qualitatively relate the solute mass (extensive) and the Cg/L (intensive), in order to determine which solution occupies a smaller volume.
Keywords
Concentration solutions, g/L, Proportionality, meaningful learningReferences
Adadan, E. y Savasci, F. (2012). An analysis of 16-17-year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument. International Journal of Science Education, 34(4), 513-544. https://doi.org/10.1080/09500693.2011.636084
Anamuah-Mensah, J. (1986). Cognitive strategies used by chemistry students to solve volumetric analysis problems. Journal of Research in Science Teaching, 23, 759-769. https://doi.org/10.1002/tea.3660230902
Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18, 53-85. https://doi.org/10.1080/03057269008559981
Bakker, A., Groenveld, D., Wijers, M., Akkerman, S. y Gravemeijer, K. (2014). Proportional reasoning in the laboratory: An intervention study in vocational education. Educational Studies in Mathematics, 86(2), 211-221. https://doi.org/10.1007/s10649-012-9393-y
Bunce, D. M. y Cole, R. S. (Eds.) (2014). Tools of chemistry education research. ACS Symposium Series / American Chemical Society. https://doi.org/10.1021/bk-2014-1166.ch001
Calik, M. (2005). A cross-age study of different perspectives in solution chemistry from junior to senior high school. International Journal of Science and Mathematics Education, 3(4), 671-696. https://doi.org/10.1007/s10763-005-1591-y
Calik, M., Ayas, A. y Ebenezer, J. (2005). A review of solution chemistry studies: Insights into students’ conceptions. Journal of Science Education and Technology, 14(1), 29-50. https://doi.org/10.1007/s10956-005-2732-3
Charters, E. (2003). The use of think-aloud methods in qualitative research. An introduction to think-aloud methods. Brock Education Journal, 12(2), 68-82. https://doi.org/10.26522/brocked.v12i2.38
Cramer, K. y Post, T. (1993). Connecting research to teaching proportional reasoning. Mathematics Teacher, 86(5), 404-407. https://doi.org/10.5951/MT.86.5.0404
De Berg, K. (2012). A study of first-year chemistry students’ understanding of solution concentration at the tertiary level. Chemistry Education Research and Practice, 13, 8-16. https://doi.org/10.1039/c1rp90056k
Devetak, I., Vogrinc, J. y Glažar, S. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research Science Education, 39(2), 157-179. https://doi.org/10.1007/s11165-007-9077-2
Ferguson, R. (2007). Constructivism and social constructivism. En G. Bodner y M. Orgill, Theoretical Frameworks for Research in Chemistry and Science Education (pp. 27-47). Pearson Prentice Hall: Upper Saddle River, NJ. https://doi.org/10.1007/s10780-006-8399-8
Fernández, C. y Llinares, S. (2012). Características del desarrollo del razonamiento proporcional en la educación primaria y secundaria. Enseñanza de las Ciencias, 30(1), 129-142. https://doi.org/10.5565/rev/ec/v30n1.596
Gabel, D. y Bunce, D. (1994). Research on problems solving: chemistry. En D. L. Gabel (Ed.), Handbook of Research on Science Teaching and Learning (pp. 301-326). Nueva York: Macmillan.
Gabel, D. y Samuel, K. (1986). High school students’ ability to solve molarity problems and their analog counterparts. Journal of Research in Science Teaching, 23(2), 165-176. https://doi.org/10.1002/tea.3660230207
Gabel, D., Sherwood, R. y Enochs, L. (1984). Problem-solving skills of high school chemistry students. Journal of Research in Science Teaching, 21(2), 221-233. https://doi.org/10.1002/tea.3660210212
Herrington, D. y Daubenmire, P. (2014). Using interviews in CER projects: options, considerations, and limitations. En D. Bunce y R. Cole, Tools of Chemistry Education Research (pp. 31-59). Washington DC: ACS Symposium Series / American Chemical Society. https://doi.org/10.1021/bk-2014-1166.ch003
Heyworth, R. (1999). Procedural and conceptual knowledge of expert and novice students for the solving of a basic problem in chemistry. International Journal of Science Education, 21(2), 195-211. https://doi.org/10.1080/095006999290787
Hilton, A., Hilton, G., Dole, S. y Goos, M. (2013). Development and application of a two-tier diagnostic instrument to assess middle-years students’ proportional reasoning. Mathematics Education Research Journal, 25(4), 523-545. https://doi.org/10.1007/s13394-013-0083-6
Johnstone, A. (1983). Chemical education research: Facts, findings, and consequences. Journal of Chemical Education, 60(11), 968-971. https://doi.org/10.1021/ed060p968
Lamon, S. (2007). Rational numbers and proportional reasoning: towards a theoretical framework for research. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: a project of the National Council of Teachers of Mathematics (pp. 629-667). Charlotte: Information Age Publishing.
Lutter, J., Hale, L. y Shultz, G. (2019). Unpacking graduate student’s knowledge for teaching solution chemistry concepts. Chemistry Education Research and Practice, 20, 258-269. https://doi.org/10.1039/c8rp00205c
Merriam, S. et al. (2002). Qualitative research in practice. San Francisco, CA: Wiley.
Napal, M., Echeverría, J., Zulet, A., Santos, L. y Ibarra, J. (2018). Estrategias del alumnado de Educación Secundaria para estimar la densidad. Enseñanza de las Ciencias, 36(1), 61-78. https://doi.org/10.5565/rev/ensciencias.2215
Niaz, M. (1995). Progressive transitions from algorithmic to conceptual understanding in student ability to solve chemistry problems: A Lakotasian interpretation. Science Education, 79, 19-36. https://doi.org/10.1002/sce.3730790103
Novik, S. y Menis, J. (1976). A study of student perceptions of the mole concept. Journal of Chemical Education, 53(11), 720-722. https://doi.org/10.1021/ed053p720
Park, J. S., Park, J. H. y Kwon, O. N. (2010). Characterizing the proportional reasoning of middle school students. Seoul National University Journal of Education Research, 19(5), 119-144.
Pinarbasi, T. y Canpolat, N. (2003). Students’ understanding of solution chemistry concepts. Journal of Chemical Education, 80(11), 1328-1332. https://doi.org/10.1021/ed080p1328
Ramful, A. y Narod, F. (2014). Proportional reasoning in the learning of chemistry: levels of complexity. Mathematics Education Research Journal, 26, 25-46. https://doi.org/10.1007/s13394-013-0110-7
Ryan, S. (2012). Student ratio use and understanding of molarity concepts within solutions chemistry (tesis doctoral). Chicago: University of Illinois.
Sanmartí, N. (2020) ¿Qué tenemos que aprender hoy? Fundación Santillana. https://www.youtube.com/watch?v=raxDh7Bw8_s
Smith, K. y Metz, P. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233-235. https://doi.org/10.1021/ed073p233
Stavy, R. (1981). Teaching inverse functions via the concentrations of salt water solution. Archives de Psychologie, 49, 267-287.
Stavy, R. y Tirosh, D. (1996). Intuitive rules in science and mathematics: the case of «more of A-more of B». International Journal of Science Education, 18(6), 653-667. https://doi.org/10.1080/0950069960180602
Talanquer, V. (2006). Commonsense chemistry: a model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811-816. https://doi.org/10.1021/ed083p811
Talanquer, V. (2014). Chemistry education: ten heuristics to tame. Journal of Chemical Education, 91, 1091-1097. https://doi.org/10.1021/ed4008765
Wink, D. y Ryan, S. (2019). The logic of proportional reasoning and its transfer into chemistry. En It’s Just Math: Research on Students’ Understanding of Chemistry and Mathematics. ACS Symposium Series. https://doi.org/10.1021/bk-2019-1316.ch010
Published
Downloads
Copyright (c) 2021 Andrés Raviolo, Nayla Traiman Schroh, Andrea Soledad Farré
This work is licensed under a Creative Commons Attribution 4.0 International License.