Systems Thinking as a Key Scientific Competence in the face of Global Environmental Change
Abstract
The socio-environmental crisis requires education to develop competencies that enhance our comprehension of the world and our capacity to act upon it. To this purpose, a didactic proposal on climate change was formulated for teacher trainees, analysing conceptualisations of systems thinking while considering international educational frameworks. This proposal enabled prospective teachers to evaluate the fundamental skills of this competence through concept maps. The analysis facilitated the identification of systems thinking as a key scientific competence for responsible decision-making. The results also showed an incipient understanding of the systemic complexities of the problem, which requires further refinement. Its development needs activities that focus on increasingly complex skills, such as understanding the system’s characteristics and their time implications.
Keywords
Systems thinking, Scientific competencies, Complexity, Global Environmental Change, Climate ChangeReferences
Álvarez, S., Carleos, C. E., Corral, N., & Prieto, E. (2018). Metodología docente y rendimiento en PISA 2015: Análisis crítico. Revista de Educación, 379(4), 85-113. https://doi.org/10.4438/1988-592X-RE-2017-379-370
Assaraf, O. B.-Z. & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518-560. https://doi.org/10.1002/tea.20061
Bevan, J. (2022). Drought risk in the Anthropocene: From the jaws of death to the waters of life. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2238), 20220003. https://doi.org/10.1098/rsta.2022.0003
Bielik, T., Delen, I., Krell, M., & Assaraf, O. B. Z. (2023). Characterising the literature on the teaching and learning of system thinking and complexity in stem education: A bibliometric analysis and research synthesis. Journal for STEM Education Research, 6(2), 199-231. https://doi.org/10.1007/s41979-023-00087-9
Bonil, J., Junyet, M., & Pujol, R. M. (2010). Educación para la sostenibilidad desde la perspectiva de la complejidad. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 7(1), 198-215. https://revistas.uca.es/index.php/eureka/article/view/2644/2293
Boon, H. J. (2016). Pre-Service Teachers and Climate Change: A Stalemate? Australian Journal of Teacher Education, 41(4), 39-63. https://doi.org/10.14221/ajte.2016v41n4.3
Brandstädter, K., Harms, U., & Großschedl, J. (2012). Assessing System Thinking Through Different Concept-Mapping Practices. International Journal of Science Education, 34(14), 2147-2170. https://doi.org/10.1080/09500693.2012.716549
Brundiers, K. et al. (2021). Key competencies in sustainability in higher education—Toward an agreed-upon reference framework. Sustainability Science, 16(1), 13-29. https://doi.org/10.1007/s11625-020-00838-2
Calafell, G. & Banqué, N. (2017). Caracterización de las concepciones de complejidad de un grupo de investigadores de la educación ambiental. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 35(1), Article 1. https://doi.org/10.5565/rev/ensciencias.1909
Chomsky, N., Pollin, R., & Polychroniou, C. J. (2020). Climate Crisis and the Global Green New Deal: The Political Economy of Saving the Planet. Verso Books.
Daniels H., Edwards, Y. E., Gallagher, T., & Ludvigsen, S. R. (Eds.) (2009). Activity theory in practice. Promoting learning across boundaries and agencies. Routledge
Demssie, Y. N., Wesselink, R., Biemans, H. J. A., & Mulder, M. (2019). Think outside the European box: Identifying sustainability competencies for a base of the pyramid context. Journal of Cleaner Production, 221, 828-838. https://doi.org/10.1016/j.jclepro.2019.02.255
Dugan, K. E., Mosyjowski, E. A., Daly, S. R., & Lattuca, L. R. (2022). Systems thinking assessments in engineering: A systematic literature review. Systems Research and Behavioral Science, 39(4), 840-866. https://doi.org/10.1002/sres.2808
European Union (2022). GreenComp. The European sustainability competence framework. Publications Office of the European Union. https://op.europa.eu/en/publication-detail/-/publication/bc83061d-74ec
-11ec-9136-01aa75ed71a1/language-es
Fischer, D., King, J., Rieckmann, M., Barth, M., Büssing, A., Hemmer, I., & Lindau-Bank, D. (2022). Teacher Education for Sustainable Development: A Review of an Emerging Research Field. Journal of Teacher Education, 73(5), 509-524. https://doi.org/10.1177/00224871221105784
Glasser, H. & Hirsh, J. (2016). Toward the Development of Robust Learning for Sustainability Core Competencies. Sustainability, 9(3), 121-134. https://doi.org/10.1089/SUS.2016.29054.hg
Gómez, C. (2018). Objetivos de Desarrollo Sostenible (ODS): Una revisión crítica. Papeles de relaciones ecosociales y cambio global, 140, 107-118. https://www.fuhem.es/wp-content/uploads/2018/12/ODS-revision-critica-C.Gomez_.pdf
Hickel, J. (2021). What does degrowth mean? A few points of clarification. Globalizations, 18(7), 1105-1111. https://doi.org/10.1080/14747731.2020.1812222
IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/
IUCN (2004). Engaging people in sustainability. The World Conservation Union. https://ue4sd.glos.ac.uk/downloads/EngagingPeople.pdf
Izquierdo, M., Espinet, M., García, M. P., & Pujol, R. M. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de las Ciencias, Extra, 79-92.
Jacobson, M. J., Markauskaite, L., Portolese, A., Kapur, M., Lai, P. K., & Roberts, G. (2017). Designs for learning about climate change as a complex system, Learning and Instruction, 52, 1-14. https://doi.org/10.1016/j.learninstruc.2017.03.007
Klein, N. (2015). This changes everything: Capitalism vs. The climate. Simon and Schuster.
Kogetsidis, H. (2023). Systems methodologies for handling problem complexity. International Journal of Organizational Analysis, 31(5), 1814-1825. https://doi.org/10.1108/IJOA-08-2021-2931
Lee, T. D., Gail Jones, M., & Chesnutt, K. (2019). Teaching Systems Thinking in the Context of the Water Cycle. Research in Science Education, 49(1), 137-172. https://doi.org/10.1007/s11165-017-9613-7
Levrini, O., Tasquier, G., Barelli, E., Laherto, A., Palmgren, E., Branchetti, L., & Wilson, C. (2021). Recognition and operationalization of Future-Scaffolding Skills: Results from an empirical study of a teaching–learning module on climate change and futures thinking. Science Education, 105(2), 281-308. https://doi.org/10.1002/sce.21612
López, F. (2022). El enfoque del currículo por competencias. Un análisis de la LOMLOE. Revista Española de Pedagogía, 80(281), 55-68. https://doi.org/10.22550/REP80-1-2022-05
Lorente, S., Canales, I., & Murillo, B. (2023). Whole Systems Thinking and Context of the University Teacher on Curricular Sustainability in Primary Education Teaching Degrees at the University of Zaragoza. Education Sciences, 13(4), 341. https://doi.org/10.3390/educsci13040341
Lorenzo-Rial, M., Varela-Losada, M., Pérez-Rodríguez, U., & Vega-Marcote, P. (2025). Developing Systems Thinking to Comprehensively Address Climate Change and Ocean Acidification: An Educational Proposal for Trainee Teachers. En W. Leal Filho, M. Sima, A. Lange Salvia, M. Kovaleva., & E. Manolas (eds), University Initiatives on Climate Change Education and Research. Springer, Cham. https://doi.org/10.1007/978-3-031-25960-9_105-1
Lorenzo-Rial, M.-A., Varela-Losada, M., Pérez-Rodríguez, U., & Vega-Marcote, P. (2024). Developing systems thinking to address climate change. International Journal of Sustainability in Higher Education, 26(1), 83-100. https://doi.org/10.1108/IJSHE-12-2022-0404
McGraw, K. O. & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30-46. https://doi.org/10.1037/1082-989X.1.1.30
Meadows, D. (2008). Pensar en sistemas. Capitán Swing.
Morin, E. & Petit, N. (2011). La vía: Para el futuro de la humanidad. Paidós.
National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. The National Academies Press. https://doi.org/10.17226/13165
OECD (2023). PISA 2025 Science framework. OECD. https://pisa-framework.oecd.org/science-2025/
Pegalajar, M. del C., Burgos, A., & Martínez, E. (2021). What Does Education for Sustainable Development Offer in Initial Teacher Training? A Systematic Review. Journal of Teacher Education for Sustainability, 23(1), 99-114. https://doi.org/10.2478/jtes-2021-0008
Portney, L. G. & Watkins, M.P. (2000). Foundations of clinical research: application to practice. Upper Saddle River.
Rockström, J. et al. (2023). Safe and just Earth system boundaries. Nature, 1-10. https://doi.org/10.1038/s41586-023-06083-8
Roychoudhury, A., Shepardson, D. P., Hirsch, A., Niyogi, D., Mehta, J., & Top, S. (2017). The Need to Introduce System Thinking in Teaching Climate Change. Science Educator, 25(2), 73-81.
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., & De Wit, C. A. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855
Streiling, S., Hörsch, C., & Rieß, W. (2021). Effects of teacher training in systems thinking on biology students—An intervention study. Sustainability, 13(14), 7631. https://doi.org/10.3390/su13147631
UNESCO (2017). Educación para los Objetivos de Desarrollo Sostenible: Objetivos de aprendizaje. Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura (UNESCO).
Vanbelle, S. (2016). A New Interpretation of the Weighted Kappa Coefficients. Psychometrika, 81(2), 399-410. https://doi.org/10.1007/s11336-014-9439-4
Varela-Losada, M., Arias-Correa, A., & Vega-Marcote, P. (2019). Educar para el cambio y la sostenibilidad: evaluación de una propuesta de aprendizaje experiencial para formar al profesorado en formación inicial. Revista Portuguesa de Educação, 32(2), 57-73. https://doi.org/10.21814/rpe.15303
Vitousek, P. M. (1994). Beyond global warming: Ecology and global change. Ecology, 75(7), 1861-1876.
Watanabe, G., Subirà, G. C., & Marín, F. R. (2022). ¿Cómo incorporamos la complejidad en actividades de educación científica y ambiental? Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 40(2), Article 2. https://doi.org/10.5565/rev/ensciencias.3504
Wesselbaum, D. & Aburn, A. (2019). Gone with the wind: International migration. Global and Planetary Change, 178, 96-109. https://doi.org/10.1016/j.gloplacha.2019.04.008
Wiek, A., Withycombe, L., & Redman, C. L. (2011). Key competencies in sustainability: A reference framework for academic program development. Sustainability Science, 6(2), 203-218. https://doi.org/10.1007/s11625-011-0132-6
Yoon, S. A., Goh, S. E., & Park, M. (2018). Teaching and learning about complex systems in K–12 science education: A review of empirical studies 1995-2015. Review of Educational Research, 88(2), 285-325. https://doi.org/10.3102/0034654317746090
York, S., Lavi, R., Dori, Y. J., & Orgill, M. (2019). Applications of Systems Thinking in STEM Education. Journal of Chemical Education, 96(12), 2742-2751. https://doi.org/10.1021/acs.jchemed.9b00261
Zulauf, C. A. (2007). Learning to think systemically: What does it take? The Learning Organization, 14(6), 489-498. https://doi.org/10.1108/09696470710825105
Published
How to Cite
Downloads
Funding data
-
Agencia Estatal de Investigación
Grant numbers PID2023-147800OB-I00
Copyright (c) 2025 Mercedes Varela-Losada, María A. Lorenzo-Rial, Nuria Castiñeira-Rodríguez , Uxío Pérez-Rodríguez

This work is licensed under a Creative Commons Attribution 4.0 International License.