The Impact of Epistemic Games on Learning about the Nature of Science in Primary Education
Abstract
Several primary school teachers teach basic aspects of the nature of science to their students through four epistemic games, which apply explicit and reflective pedagogy as well as some scientific thinking skills. The aims of this study are the acceptance and self-appropriation of the teaching materials among teachers, the motivation of the students and an exploratory analysis of the impact of these games on student learning. The teaching materials, instruments and procedures of this innovation are here presented. The results indicate good acceptance by teachers, excellent participation of students and a moderate improvement of their image of science, especially among the participating girls. Finally, the feasibility of this innovation, its consequences for improving science education in primary school, the limitations of this study and its prospective potential are discussed.
Keywords
Nature of science, Serious learning games, Scientific thinking skills, Attitudes related to science, Gender and scienceReferences
Abrahams, I. y Reiss, M. J. (2012). Practical work: Its effectiveness in primary and secondary schools in England. Journal of Research in Science Teaching, 49, 1035-1055. https://doi.org/10.1002/tea.21036
Aguillon, S. M., Siegmund, G. F., Petipas, R. H., Drake, A. G., Cotner, S. y Ballen, C. J. (2020). Gender differences in student participation in an active-learning classroom. CBE Life Sciences Education, 19(2), 12. https://doi.org/10.1187/cbe.19-03-0048
Allchin, D. y Zemplén, G. Á. (2020). Finding the place of argumentation in science education: Epistemics and Whole Science. Science Education, 104, 907-933. https://doi.org/10.1002/sce.21589
Andersen, H. (2001). Gender inequality and paradigms in the social sciences. Social Science Information, 40(2), 265-289. https://doi.org/10.1177/053901801040002004
Archer, L., Moote, J., MacLeod, E., Francis, B. y DeWitt, J. (2020). ASPIRES 2: Young people’s science and career aspirations, age 10-19. UCL Institute of Education.
Arztmann, M., Hornstra, L., Jeuring, J. y Kester, L. (2022). Effects of games in STEM education: a meta-analysis on the moderating role of student background characteristics. Studies in Science Education, 59, 109-145. https://doi.org/10.1080/03057267.2022.2057732
Capraro, R. M., Capraro, M. M. y Morgan, J. R. (2013). STEM Project-Based Learning. Sense Publishers.
Chater, N. (2018). The mind is flat. Allen Lane.
Cheryan, S., Ziegler, S. A., Montoya, A. K. y Jiang. L. (2017). Why are some STEM fields more gender-balanced than others? Psychological Bulletin, 143(1), 1-35. http://dx.doi.org/10.1037/bul0000052.
Clark, D. B., Tanner-Smith, E. E. y Killingsworth, S. S. (2016). Digital Games, Design, and Learning: A Systematic Review and Meta-Analysis. Review of Educational Research, 86, 79-122. https://doi.org/10.3102/0034654315582
Cofré, H., Nuñez, P., Santibáñez, D., Pavez, J. M., Valencia, M. y Vergara, C. (2019). A critical review of students’ and teachers’ understandings of nature of science. Science & Education, 28, 205-248. https://doi.org/10.1080/09500693.2022.2152294
Erduran, S. y Dagher, Z. R. (Eds.) (2014). Reconceptualizing the Nature of Science for Science Education. Scientific Knowledge, Practices and Other Family Categories. Springer. https://doi.org/10.1007/978-94-017-9057-4
Erduran, S. y Kaya, E. (2018). Drawing nature of science in pre-service science teacher education: Epistemic insight through visual representations. Research in Science Education, 48, 1133-1149. https://doi.org/10.1007/s11165-018-9773-0
Fensham, P. J. (2009). Real world contexts in PISA science: Implications for context-based science education. Journal of Research in Science Teaching, 46(8), 884-896. https://doi.org/10.1002/TEA.20334
Ford, C. L. y Yore, L. D. (2012). Toward convergence of critical thinking, metacognition, and reflection: Illustrations from natural and social sciences, teacher education, and classroom practice. En A. Zohar y Y. J. Dori (Eds.), Metacognition in science education (pp. 251-271). Springer. https://doi.org/10.1007/978-94-007-2132-6_11
Fouad, K. E., Masters, H. y Akerson, V. L. (2015). Using History of Science to Teach Nature of Science to Elementary Students. Science & Education, 24, 1103-1140. https://doi.org/10.1007/S11191-015-9783-5
Fourez, G. (1994). La construcción del conocimiento científico. Narcea.
García-Carmona, A. (2022). La comprensión de aspectos epistémicos de la naturaleza de la ciencia en el nuevo currículo de Educación Secundaria Obligatoria, tras la LOMLOE. Revista Española de Pedagogía, 80 (283), 433-450. https://doi.org/10.22550/REP80-3-2022-01
Gericke, N., Högström, P. y Wallin, J. (2022). A systematic review of research on laboratory work in secondary school. Studies in Science Education. https://doi.org/10.1080/03057267.2022.2090125
Greene, J. A., Sandoval, W. A. y Bråten, I. (2016). Handbook of epistemic cognition. Routledge. https://doi.org/10.4324/9781315795225
Hofer, B. K. (2016). Epistemic cognition as a psychological construct: Advancements and challenges. En J. A. Greene, W. A. Sandoval y I. Bråten (Eds.), Handbook of epistemic cognition (pp. 19-38). Routledge. https://doi.org/10.4324/9781315795225
Holmes, N. G., Heath, G., Hubenig, K., Jeon, S., Kalender, Z. Y., Stump, E. y Sayre, E. C. (2022). Evaluating the role of student preference in physics lab group equity. Physical Review Physics Education Research, 18. https://doi.org/10.1103/PhysRevPhysEducRes.18.010106
Jidesjö, A., Oskarsson, M. y Westman, A-K. (2021). Trends in Student’s Interest in Science and Technology: Developments and Results from the Relevance of Science Education Second (Roses) Study. IOSTE 2020 Symposium. Kyungpook National University, Daegu, Korea (4-5 February).
Kahneman, D. (2012). Pensar rápido, pensar despacio. Debate.
Khishfe, R. (2020). Explicit Instruction and Student Learning of Argumentation and Nature of Science. Journal of Science Teacher Education, 32, 325-349. https://doi.org/10.1080/1046560X.2020.1822652
Khishfe, R., Alshaya, F. S., BouJaoude, S., Mansour, N. y Alrudiyan, K. I. (2017). Students’ understandings of nature of science and their arguments in the context of four socio-scientific issues, International Journal of Science Education, 39, 299-334. https://doi.org/10.1080/09500693.2017.1280741
Kreitchmann, R. S., Abad, F. J., Ponsoda, V., Nieto, M. D. y Morillo, D. (2019). Controlling for response biases in self-report scales: Forced-choice vs. psychometric modeling of Likert items. Frontiers of Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02309
Lederman, N. G. (2007). Nature of science: past, present, and future. En S. K. Abell y N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203097267
Lederman, N. G. y Lederman, J. S. (2019). Teaching and Learning of Nature of Scientific Knowledge and Scientific Inquiry: Building Capacity through Systematic Research-Based Professional Development. Journal of Science Teacher Education, 30, 737-762. https://doi.org/10.1080/1046560X.2019.1625572
Li, M-C. y Tsai, C-C. (2013). Game-Based Learning in Science Education: A Review of Relevant Research. Journal of Science Education and Technology, 22, 877-898. https://doi.org/10.1007/s10956-013-9436-x
Manassero-Mas, M. A. y Vázquez-Alonso, A. (2019). Conceptualización y taxonomía para estructurar los conocimientos acerca de la ciencia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16, 3104. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i3.3104
Manassero-Mas, M. A. y Vázquez-Alonso, Á. (2020). Pensamiento científico y pensamiento crítico: competencias transversales para aprender. Indagatio, 12, 401-419. https://doi.org/10.34624%2Fid.v12i4.21808
Manassero Mas, M. A. y Vázquez Alonso, A. (2024). El impacto de juegos epistémicos para aprender sobre naturaleza de la ciencia en primaria. Repositorio Institucional UIB. http://hdl.handle
.net/11201/164427
Mullis, I. V. S., Martin, M. O. y von Davier, M. (2021). TIMSS 2023 Assessment Framework. Boston College. https://timssandpirls.bc.edu/index.html
National Literacy Trust. (2018). Fake news and critical literacy. National Literacy Trust. literacytrust.org.uk/fake-news-resources.
NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. The National Academies Press. https://doi.org/10.17226/18290
OECD. (2017). The Pursuit of Gender Equality: An Uphill Battle. OECD Publishing.
Oubahssi, L., Piau-Toffolon, C., Loup, G. y Sanchez, É. (2020). From Design to Management of Digital Epistemic Games. International Journal of Serious Games, 7, 23-46. https://doi.org/10.17083/ijsg.v7i1.336
Plass, J. L., Mayer, R. E. y Homer, B. D. (2019). Handbook of Game-based Learning. The MIT Press.
Quinn, K. N., Kelley, M. M., Mcgill, K. L., Smith, E. M., Whipps, Z. y Holmes, N. G. (2020). Group roles in unstructured labs show inequitable gender divide. Physical Review Physics Education Research, 16. https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.16.010129
Ramsden, J. M. (1998). Mission impossible? Can anything be done about attitudes to science? International Journal of Science Education, 20(2), 125-137. https://doi.org/10.1080/0950069980200201
Roberts, D. A. (2011). Competing visions of scientific literacy: The influence of a science curriculum policy image. En C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erickson y A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 11-27). Routledge. https://doi.org/10.4324/9780203843284
Rudge, D. W. y Howe, E. M. (2009). An explicit and reflective approach to the use of history to promote understanding of the nature of science. Science & Education, 18, 561-580. https://doi.org/10.1007/s11191-007-9088-4
Saido, G. A. M., Siraj, S., DeWitt, D. y Al-Amedy, O. S. (2018). Development of an instructional model for higher order thinking in science among secondary school students: a fuzzy Delphi approach. International Journal of Science Education, 40, 847-866. https://doi.org/10.1080/09500693.2018.1452307
Settlage, J. y Southerland, S. A. (2020). Epistemic tools for science classrooms: The continual need to accommodate and adapt. Science Education, 103, 1112-1119. https://doi.org/10.1002/sce.21510
Simonneaux, L. (2014). From promoting the techno-sciences to activism – A variety of objectives involved in the teaching of SSIS. En L. Bencze y S. Alsop (Eds.), Activist science and technology education (pp. 99-112). Springer. https://doi.org/10.1007/978-94-007-4360-1_6
Sjøberg, S. y Schreiner, C. (2019). ROSE (The Relevance of Science Education.) The development, key findings and impacts of an international low-cost comparative project. ROSE Final Report, Part 1. University of Oslo. https://www.academia.edu/40272545/The_ROSE_project._The_develop
ment_key_findings_and_impacts_of_an_international_low_cost_comparative_project_Final_Re
port_Part_1_of_2_
Sjöström, J. y Eilks, I. (2020). Correction to: Reconsidering Different Visions of Scientific Literacy and Science Education Based on the Concept of Bildung. En Y. J. Dori, Z. R. Mevarech y D. R. Baker (Eds.), Cognition, Metacognition, and Culture in STEM Education. Springer. https://doi.org/10.1007/978-3-319-66659-4_4
Tena, E. y Couso, D. (2023). El diseño de preguntas investigables en el ciclo superior de primaria. Enseñanza de las Ciencias, 41(1), 101-123. https://doi.org/10.5565/rev/ensciencias.5573
Vázquez, A. y Manassero, M. A. (2007). La relevancia de la educación científica. Universitat de les Illes Balears.
Vázquez-Alonso, Á. y Manassero-Mas, M. A. (2012). La selección de contenidos para enseñar naturaleza de la ciencia y tecnología (parte 2): Una revisión desde los currículos de ciencias y la competencia PISA. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(1), 34-55, http://reuredc
.uca.es/index.php/tavira/article/view/222
Vázquez-Alonso, A. y Manassero-Mas, M. A. (2016). Training secondary teachers about nature of science: a simple explicit-reflective model. En J. Lavonen, K. Juuti, J. Lampiselkä, A. Uitto y K. Hahl (Eds.), Electronic Proceedings of the ESERA 2015 Conference (pp. 916- 927). University of Helsinki. eBook2015_Part_6_links.pdf (dropbox.com)
Vázquez-Alonso, Á. y Manassero-Mas, M. A. (2017a). Contenidos de naturaleza de la ciencia y la tecnología en los nuevos currículos básicos de educación secundaria. Revista de Currículum y Formación de Profesorado, 21, 294-312. https://recyt.fecyt.es/index.php/profesorado/article/view/58064
Vázquez-Alonso, A. y Manassero-Mas, M. A. (2017b). Juegos para enseñar la naturaleza del conocimiento científico y tecnológico. Educar, 53, 149-170. https://doi.org/10.5565/rev/educar.839
Wiley, D., Bliss, T. J. y McEwen, M. (2014). Open Educational Resources: A Review of the Literature. En J. Spector, M. Merrill, J. Elen y M. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 781-789). Springer. https://doi.org/10.1007/978-1-4614-3185-5
Willingham, D. T. (2012). Why Don’t Students Like School? Jossey-Bass. https://doi.org/10.1002/9781118269527
Published
Downloads
Copyright (c) 2024 María-Antonia Manassero-Mas, Ángel Vázquez-Alonso
This work is licensed under a Creative Commons Attribution 4.0 International License.