Which is the Best Strategy for a Fermi Problem? Adaptability of Pre-Service Teachers

Authors

  • Carlos Segura Cordero Universitat de València
  • Irene Ferrando Universitat de València

Abstract

Fermi problems, suitable for primary school, pose a real and open situation that allows the development and comparison of multiple strategies. This requires teachers to be adaptive (able to choose the most appropriate strategy). The aim of this paper is to characterise and analyse the adaptability of prospective teachers when solving these problems. For this purpose, the research is divided into two studies. Study 1 presents a survey addressed to experts in mathematics education; the analysis of their answers makes it possible to link the contextual characteristics of the problems with strategies, and these with appropriateness criteria (accuracy, speed and rigour). These results lead to a characterisation of adaptability that allows us to approach Study 2 with pre-service teachers, finding that most adaptive solvers use strategies non-systematically.

Keywords

Adaptability, Flexibility, Estimation, Modelling, Fermi problems

References

Albarracín, L., Ferrando, I. y Gorgorió, N. (2021). The Role of Context for Characterising Students’ Strategies when Estimating Large Numbers of Elements on a Surface. International Journal of Science and Mathematics Education, 19, 1209-1227. https://doi.org/10.1007/s10763-020-10107-4

Albarracín, L. y Gorgorió, N. (2019). Using large number estimation problems in primary education classrooms to introduce mathematical modelling. International Journal of Innovation in Science and Mathematics Education, 27(2), 45-57. https://doi.org/10.30722/IJISME.27.02.004

Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Mathematics Enthusiast, 6(3), 331-364. https://doi.org/10.54870/1551-3440.1157

Blöte, A. W., Van der Burg, E. y Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: instruction effects. Journal of Educational Psychology, 93, 627-638. https://doi.org/10.1037/0022-0663.93.3.627

Carlson, J. E. (1997). Fermi problems on gasoline consumption. The Physics Teacher, 35(5), 308-309. https://doi.org/10.1119/1.2344696

Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT: International Journal on Math, Science and Technology Education, 3(1), 19-36. https://doi.org/10.31129/lumat.v3i1.1049

Durkin, K., Star, J. R. y Rittle-Johnson, B. (2017). Using comparison of multiple strategies in the mathematics classroom: lessons learned and next steps. ZDM Mathematics Education, 49, 585-597. https://doi.org/10.1007/s11858-017-0853-9

Efthimiou, C. J. y Llewellyn, R. A. (2007). Cinema, Fermi problems and general education. Physics Education, 42(3), 253. https://doi.org/10.1088/0031-9120/42/3/003

English, L. D. (2011). Data modeling in the beginning school years. En P. Sullivan y M. Goos (Eds.), Proceedings of the 34th Annual Conference of the Mathematics Education Research Group of Australia (pp. 226-234). MERGA.

Ferrando, I., Segura, C. y Pla-Castells, M. (2021). Analysis of the relationship between context and solution plan in modelling tasks involving estimations. En F. K. S. Leung, G. A. Stillman, G. Kaiser y K. L. Wong (Eds.), Mathematical Modelling Education in East and West (pp. 119-128). Cham: Springer. https://doi.org/10.1007/978-3-030-66996-6_10

Garcia Coppersmith, J. y Star, J. R. (2022). A Complicated Relationship: Examining the Relationship Between Flexible Strategy Use and Accuracy. Journal of Numerical Cognition, 8(3), 382-397. https://doi.org/10.5964/jnc.7601

Haberzettl, N., Klett, S. y Schukajlow, S. (2018). Mathematik rund um die Schule—Modellieren mit Fermi-Aufgaben. En K. Eilerts y K. Skutella (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 5. Ein ISTRON-Band für die Grundschule (pp. 31-41). Springer Spectrum. https://doi.org/10.1007/978-3-658-21042-7_3

Henze, J. y Fritzlar, T. (2010). Primary school children’s model building processes by the example of Fermi questions. En A. Ambrus y E. Vásárhelyi (Eds.), Problem Solving in Mathematics Education. Proceedings of the 11th ProMath conference (pp. 60-75). Eötvös Loránd University.

Heinze, A., Star, J. R. y Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. ZDM Mathematics Education, 41, 535-540. https://doi.org/10.1007/s11858-009-0214-4

Hickendorff, M. (2022). Flexibility and Adaptivity in Arithmetic Strategy Use: What Children Know and What They Show. Journal of Numerical Cognition, 8(3), 367-381. https://doi.org/10.5964/jnc.7277

Hickendorff, M., McMullen, J. y Verschaffel, L. (2022). Mathematical Flexibility: Theoretical, Methodological, and Educational Considerations. Journal of Numerical Cognition, 8(3), 326-334. https://doi.org/10.5964/jnc.10085

Huincahue-Arcos, J., Borromeo-Ferri, R. y Mena-Lorca, J. J. F. (2018). El conocimiento de la modelación matemática desde la reflexión en la formación inicial de profesores de matemática. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 36(1), 99-115. https://doi.org/10.5565/rev/ensciencias.2277

Klock, H. y Siller, H.-S. (2020). A Time-Based Measurement of the Intensity of Difficulties in the Modelling Process. En H. Wessels, G. A. Stillman, G. Kaiser, y E. Lampen (Eds.), International perspectives on the teaching and learning of mathematical modelling (pp. 163-173). Springer. https://doi.org/10.1007/978-3-030-37673-4_15

Ko, P. Y. y Marton, F. (2004). Variation and the secret of the virtuoso. En F. Marton y A. B. M. Tsui (Eds.), Classroom discourse and the space of learning (pp. 43-62). Erlbaum. https://doi.org/10.4324/9781410609762

Krawitz, J., Schukajlow, S. y Van Dooren, W. (2018). Unrealistic responses to realistic problems with missing information: what are important barriers? Educational Psychology, 38(10), 1221-1238. https://doi.org/10.1080/01443410.2018.1502413

Lemaire, P. y Siegler, R. S. (1995). Four aspects of strategic change: contributions to children’s learning of multiplication. Journal of experimental psychology: General, 124(1), 83. https://doi.org/10.1037/0096-3445.124.1.83

Levav-Waynberg, A. y Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. The Journal of Mathematical Behavior, 31(1), 73-90. https://doi.org/10.1016/j.jmathb.2011.11.001

Lu, X. y Kaiser, G. (2022). Creativity in students’ modelling competencies: conceptualisation and measurement. Educational Studies in Mathematics, 109(2), 287-311. https://doi.org/10.1007/s10649-021-10055-y

Newton, K. J., Lange, K. y Booth, J. L. (2020). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. The Journal of Experimental Education, 88(4), 503-515. https://doi.org/10.1080/00220973.2019.1586629

Nistal A. A., Van Dooren W. y Verschaffel L. (2012). Flexibility in Problem Solving: Analysis and Improvement. En N. M. Seel (Eds.), Encyclopedia of the Sciences of Learning. Springer. https://doi.org/10.1007/978-1-4419-1428-6_540

Obersteiner, A., Alibali, M. W. y Marupudi, V. (2022). Comparing fraction magnitudes: Adults’ verbal reports reveal strategy flexibility and adaptivity, but also bias. Journal of Numerical Cognition, 8(3), 398-413. https://doi.org/10.5964/jnc.7577

Okamoto, H., Hartmann, M. y Kawasaki, T. (2023). Analysis of the Relationship between Creativity in Fermi Problems Measured by Applying Information Theory, Creativity in Psychology, and Mathematical Creativity. Education Sciences, 13(3), 315. https://doi.org/10.3390/educsci13030315

Peter-Koop, A. (2009). Teaching and Understanding Mathematical Modelling through Fermi-Problems. En B. Clarke, B. Grevholm y R. Millman (Eds.), Tasks in primary mathematics teacher education (pp. 131-146). Springer. https://doi.org/10.1007/978-0-387-09669-8_10

Pla-Castells, M., Melchor, C. y Chaparro, G. (2021). MAD+. Introducing misconceptions in the temporal analysis of the mathematical modelling process of a Fermi problem. Education Sciences, 11(11), 747. https://doi.org/10.3390/educsci11110747

Segura, C., Ferrando, I. y Albarracín, L. (2021). Análisis de los factores de complejidad en planes de resolución individuales y resoluciones grupales de problemas de estimación de contexto real. Quadrante, 30(1), 31-51. https://doi.org/10.48489/quadrante.23592

Segura, C., Ferrando, I. y Albarracín, L. (2023). Does collaborative and experiential work influence the solution of real-context estimation problems? A study with prospective teachers. The Journal of Mathematical Behavior, 70, 101040. https://doi.org/10.1016/j.jmathb.2023.101040

Segura, C. y Ferrando, I. (2023). Pre-service teachers’ flexibility and performance in solving Fermi problems. Educational Studies in Mathematics, 113(2), 207-227. https://doi.org/10.1007/s10649-023-10220-5

Robinson, A. W. (2008). Don’t just stand there—teach Fermi problems! Physics Education, 43(1), 83-87. https://doi.org/10.1088/0031-9120/43/01/009

Sáenz, C. (2007). La competencia matemática (en el sentido de PISA) de los futuros maestros. Enseñanza de las Ciencias, 25(3), 355-366. https://doi.org/10.5565/rev/ensciencias.3701

Schoenfeld, A. H. (1982). Measures of problem-solving performance and of problem-solving instruction. Journal for Research in Mathematics Education, 13(1), 31-49. https://doi.org/10.2307/748435

Schukajlow, S., Krug, A. y Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393-417. https://doi.org/10.1007/s10649-015-9608-0

Selter, C. (2009). Creativity, flexibility, adaptivity, and strategy use in mathematics. ZDM Mathematics Education, 41, 619-625. https://doi.org/10.1007/s11858-009-0203-7

Siegler, R. S. (1996). Emerging minds: The process of change in children ‘s thinking. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780195077872.001.0001

Sriraman, B. y Lesh, R. (2006). Modeling conceptions revisited. Zentralblatt für Didaktik derMathematik, 38, 247-254. https://doi.org/10.1007/BF02652808

Sriraman, B. y Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. Interchange, 40(2), 205-223. https://doi.org/10.1007/s10780-009-9090-7

Star, J. R. y Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and instruction, 18(6), 565-579. https://doi.org/10.1016/j.learninstruc.2007.09.018

Taggart, G. L., Adams, P. E., Eltze, E., Heinrichs, J., Hohman, J. y Hickman, K. (2007). Fermi Questions. Mathematics Teaching in the Middle School, 13(3), 164-167. https://doi.org/10.5951/MTMS.13.3.0164

Threlfall, J. (2002). Flexible Mental Calculation. Educational Studies in Mathematics, 50, 29-47. https://doi.org/10.1023/A:1020572803437

Van Dooren, W., Verschaffel, L. y Onghena, P. (2003). Preservice teachers’ preferred strategies for solving Arithmetic and Algebra word problems. Journal of Mathematics Teacher Education, 6(1), 27-52. https://doi.org/10.1023/A:1022109006658

Verschaffel, L., Luwel, K., Torbeyns, J. y Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24(3), 335-359. https://doi.org/10.1007/BF03174765

Published

2023-11-03

Downloads

Download data is not yet available.