Development of Algebraic Thinking Through Justification in Elementary Education

Authors

Abstract

The aim of this paper is to describe a teaching proposal that promotes algebraic thinking through the expression and justification of mathematical ideas when solving tasks related to three different approaches to algebraic thinking. We designed a classroom teaching experiment implemented during the COVID pandemic in Chile. We analyze the oral discussions and the written productions of children in fourth grade (9-10 years old). The results show that the children expressed and justified increasingly sophisticated algebraic ideas. That is, they gradually adopted a more precise and abstract mathematical language. We conclude that this modality of work, in which the algebraic character of arithmetic is highlighted through various instances of discussion, is a contribution for teachers, by guiding them in addressing current teaching challenges.

Keywords

Conjecture, Elementary education, Generalization, Justification, Algebraic thinking

References

Ayala-Altamirano, C. y Molina, M. (2021). Fourth-graders’ justifications in early algebra tasks involving a functional relationship. Educational Studies in Mathematics, 107(2), 359-382. https://doi.org/10.1007/s10649-021-10036-1

Ayala-Altamirano, C., Pinto, E., Molina, M. y Cañadas, M. C. (2022). Interacting with indeterminate quantities through arithmetic word problems: Tasks to promote algebraic thinking at elementary school. Mathematics 10(1), 2229. https://doi.org/10.3390/math10132229

Blanton, M. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Heinemann.

Blanton, M. L., Levi, L., Crites, T. y Dougherty, B. J. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. NCTM.

Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., Stroud, R., Fonger, N. y Stylianou, D. (2018). Implementing a framework for early algebra. En C. Kieran (ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 27-49). Springer.

Blanton, M., Gardiner, A. M., Ristroph, I., Stephens, A., Knuth, E. y Stroud, R. (2022). Progressions in young learners’ understandings of parity arguments. Mathematical Thinking and Learning, 1-32. https://doi.org/10.1080/10986065.2022.2053775

Cañadas, M. C. y Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 67-78. https://doi.org/10.30827/pna.v1i2.6213

Cañadas, M. C. y Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades. En E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruíz-Hidalgo y M. Torralbo (eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209-218). Comares.

Carpenter, T. P., Franke, M. L. y Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in elementary school. Heinemann.

Carpenter, T. y Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades (Research report No. 00-2). National Center for Improving student Learning and Achievement in Mathematics and Science.

Carraher, D. W. y Schliemann, A. D. (2007). Early algebra and algebraic reasoning. En F. K. Lester (ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). NCTM.

Cetina-Vázquez, M. y Cabañas-Sánchez, G. (2022). Estrategias de generalización de patrones y sus diferentes formas de uso en quinto grado. Enseñanza de las Ciencias, 40(1), 65-86. https://doi.org/10.5565/rev/ensciencias.3096

Embid, S. (2022). Una mirada a los números pares, impares e igualdades numéricas: ¿Cómo justifican generalizaciones los niños de 9-10 años según su pensamiento algebraico? (trabajo de fin de máster). Universidad de Granada.

Ingram, J., Andrews, N. y Pitt, A. (2019). When students offer explanations without the teacher explicitly asking them to. Educational Studies in Mathematics, 101(1), 51-66. https://doi.org/10.1007/s10649-018-9873-9

Janßen, T. y Radford, L. (2015). Solving equations: Gestures, (un)allowable hints, and the unsayable matter. En K. Krainer y N. Vvondrová (eds.), Proceedings on the Ninth Congress of the European Society for Research in Mathematics Education (pp. 419- 425). Charles University.

Kaput, J. J. (2008). What is algebra? What is the algebraic reasoning? En J. J. Kaput, D. W. Carraher y M. L. Blanton (eds.), Algebra in the early grades (pp. 5-17). Lawrence Erlbaum Associates.

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151.

Kieran, C. (2022). The multi-dimensionality of early algebraic thinking: background, overarching dimensions, and new directions. ZDM – Mathematics Education, 1-20. https://doi.org/10.1007/S11858-022-01435-6

Lannin, J., Ellis, A. B. y Elliot, R. (2011). Developing essential understanding of mathematical reasoning. NCTM.

Mason, J. (1996). Expressing generality and roots of algebra. En N. Bernarz, C. Kieran y L. Lee (eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65-86). Springer.

Mason, J. (2017). Overcoming the algebra barrier: Being particular about the general, and generally looking beyond the particular, in homage to Mary Boole. En S. Stewart (ed.), And the rest is just algebra (pp. 97-117). Springer. https://doi.org/10.1007/978-3-319-45053-7_6

Ministerio de Educación, Cultura y Deporte. (2022). Real Decreto 157/2022 de 01 de marzo, por el que se establece la ordenación y enseñanzas mínimas de la Educación Primaria. BOE, 52, 24386–24504.

Molina, M. (2009). Una propuesta de cambio curricular: integración del pensamiento algebraico en Educación Primaria. PNA, 3(3), 135-156. https://doi.org/10.30827/pna.v3i3.6186

Morales, R., Cañadas, M. C., Brizuela, B. M. y Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de educación primaria en un contexto funcional. Enseñanza de las Ciencias, 36(3), 59-78. https://doi.org/10.5565/rev/ensciencias.2472

Morgan, C., Craig, T., Schuettte, M. y Wagner, D. (2014). Language and communication in mathematics education: An overview of reserarch in the field. ZDM – Mathematics Education, 46(6), 843-853. https://doi.org/10.1007/s11858-014-0624-9

Pincheira, N. y Alsina, Á. (2021). Hacia una caracterización del álgebra temprana a partir del análisis de los currículos contemporáneos de Educación Infantil y Primaria. Educación Matemática, 33(1), 153-180. https://doi.org/10.24844/em3301.06

Pinto, E. y Ayala-Altamirano, C. (2021). Álgebra más allá de letras y números: Oportunidades para desarrollar el pensamiento algebraico en la educación primaria. Tangram – Revista de Educação Matemática, 4(4), 35-48.

Pinto, E. y Cañadas, M. C. (2021). Generalizations of third and fifth graders within a functional approach to early algebra. Mathematics Education Research Journal, 33(1), 113-134. https://doi.org/10.1007/s13394-019-00300-2

Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. En C. Kieran (ed.), Teaching and learning algebraic thinking with 5 - 12 year- olds. ICME 13 Monographs (pp. 3-25). Springer.

Radford, L. (2021). O ensino-aprendizagem da ágebra na teoria da objetivação. En V. Moretti y L. Radford (eds.), Pensamento algébrico nos anos iniciais: Diálogos e complementaridades entre a teoria da objetivação e a teoria histórico-cultural (pp. 171-195). Livraria da Física.

Russell, J., Schifter, D. y Bastable, V. (2017). Connecting arithmetic to algebra. Strategies for building algebraic thinking in the elementary grades. Heinemann.

Simon, M. A. y Blume, G. W. (1996). Justification in the mathematics classroom: A study of prospective elementary teachers. Journal of Mathematical Behavior, 15(1), 3-31.

Stephens, A. C., Ellis, A. B., Blanton, M. L. y Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. En J. Cai (ed.), Compendium for research in mathematics education (pp. 386-420). NCTM.

Thanheiser, E. y Sugimoto, A. (2022). Justification in the context of elementary grades: Justification to develop and provide access to mathematical reasoning. En K. Bieda, A.M. Conner, K.W. Kosko y M. Staples (eds.), Conceptions and consequences of mathematical argumentation, justification, and proof (pp. 35-48). Springer.

Trelles, C., Toalongo, X. y Alsina, Á. (2022). Una actividad de modelización matemática en primaria con datos auténticos de la COVID-19. Enseñanza de las Ciencias, 40(2), 193-213. https://doi.org/10.5565/rev/ensciencias.3472

Published

2023-03-02

Downloads

Download data is not yet available.