Dynamic and Static Conceptions of Infinity: Continuous Processes and their Totalities
Abstract
From a cognitive perspective, the study of infinity in mathematics education has focused on analyzing the potential and actual infinities. From the point of view of APOS (Action, Process, Object, Schema) theory, these notions have been explained in terms of iterative infinite processes and transcendent objects, respectively. In this article a genetic decomposition that supports the design of two problems related to the tangent line to a curve, where dynamic and static aspects have been taken into consideration, is presented. By means of an interview with a university instructor, evidence of Totality, a possible new structure that allows an individual to conceive a Process as a whole without being able to apply Actions to it is presented.
Keywords
Mathematical infinity, APOS theory, Infinite processes, Transcendent objectsReferences
Arnon, I., Dubinsky, E., Cottrill, J., Oktaç, A., Roa-Fuentes, S., Trigueros, M. y Weller, K. (2014). APOS theory – a framework for research and curriculum development in mathematics education. New York: Springer. http://dx.doi.org/10.1007/978-1-4614-7966-6
Artigue, M. (1995). La enseñanza de los principios del Cálculo: problemas epistemológicos, cognitivos y didácticos. En P. Gómez (Ed.), Ingeniería Didáctica en Educación Matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas (pp. 97-140). Bogotá, Colombia: Grupo Editorial Iberoamérica.
Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D. y Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. En J. Kaput, A. H. Schoenfeld y E. Dubinsky (Eds.), Research in Collegiate Mathematics Education II (pp. 1-32). American Mathematical Society. CBMS Issues in Mathematics Education, 6. http://dx.doi.org/10.1090/cbmath/006/01
Breidenbach, D., Dubinsky, E., Hawks, J. y Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285. https://doi.org/10.1007/bf02309532
Brown, A., McDonald, M. y Weller, K. (2010). Step by step: Infinite iterative processes and actual infinity. En F. Hitt, D. Holton y P. W. Thompson (Eds.), Research in Collegiate Mathematics Education VII (pp. 115-141). American Mathematical Society. CBMS Issues in Mathematics Education, 16. http://dx.doi.org/10.1090/cbmath/016/05
Brousseau, G. (2002). Theory of didactical situations in mathematics. Nueva York: Kluwer Academic Publishers.
Cornu, B. (1992). Limits. En D. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht, Países Bajos: Kluwer Academic.
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K. y Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15(2), 167-192. https://doi.org/10.1016/S0732-3123(96)90015-2
Dreyfus, T. y Tsamir, P. (2004). Ben’s consolidation of knowledge structures about infinite sets. Journal of Mathematical Behavior, 23, 271-300. http://dx.doi.org/10.1016/j.jmathb.2004.06.002
Dubinsky, E., Weller, K., McDonald, M. y Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS-Based analysis: Part 1. Educational Studies in Mathematics, 58, 335-359. http://dx.doi.org/10.1007/s10649-005-2531-z
Dubinsky, E., Weller, K., McDonald, M. y Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 2. Educational Studies in Mathematics, 60, 253-266. http://dx.doi.org/10.1007/s10649-005-0473-0
Dubinsky, E., Weller, K., Stenger, K. y Vidakovic, D. (2008). Infinite iterative processes: The Tennis Ball Problem. European Journal of Pure and Applied Mathematics, 1(1), 99-121.
Dubinsky, E., Weller, K. y Arnon, I. (2013). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: The Case of 0.999... and 1. Canadian Journal of Science, Mathematics, and Technology Education, 13(3), 232-258. http://dx.doi.org/10.1080/14926156.2013.816389
Fischbein, E. (1987). Intuition in Science and Mathematics. Dordrecht: Reidel Publ. https://doi.org/10.2307/3619981
Fischbein, E. (2001). Tacit models and infinity. Educational Studies in Mathematics, 23(48), 309-329. https://doi.org/10.1023/a:1016088708705
Hauchart, C. y Rouche, N. (1987). Apprivoiser L’infini: Un Enseignement des Débuts de L’analyse. Lovaina: CIACO.
McDonald, M., Mathews, D. y Strobel, K. (2000). Understanding sequences: A tale of two objects. Research in Collegiate Mathematics Education IV. CBMS issues in Mathematics Education (vol. 8, pp. 77-102). Providence, RI: American Mathematical Society.
Mena-Lorca, A., Mena-Lorca, J., Montoya-Delgadillo, E., Morales, A. y Parraguez, M. (2015). El obstáculo epistemológico del infinito actual: persistencia, resistencia y categorías de análisis. Revista Latinoamericana de Investigación en Matemática Educativa, 18(3), 329-358. http://dx.doi.org/10.12802/relime.13.1832
Moreno, L. y Waldegg, G. (1991). The conceptual evolution of actual mathematical infinity. Educational Studies in Mathematics, 22, 211-231. https://doi.org/10.1007/bf00368339
Oktaç, A. (2019). Mental constructions in linear algebra. ZDM Mathematics Education, 51(7), 1043-1054. https://doi.org/10.1007/s11858-019-01037-9
Orts, A., Llinares, S. y Boigues, F. J. (2016). Elementos para una Descomposición Genética del concepto de recta tangente. Avances de Investigación en Educación Matemática, 10, 111-134.
Piaget, J. y García, R. (1982). Psicogénesis e Historia de la Ciencia. México: Siglo XXI Editores.
Roa-Fuentes, S. y Oktaç, A. (2014). El infinito potencial y actual: descripción de caminos cognitivos para su construcción en un contexto de paradojas. Educación Matemática, 26(1), 73-101.
Sacristán, A. I. (1991). Los obstáculos de la intuición en el aprendizaje de procesos infinitos. Educación Matemática, 3(1), 5-18.
Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371-397. http://dx.doi.org/10.1007/BF00240986
Villabona, D. y Roa-Fuentes, S. (2016). Procesos iterativos infinitos y objetos trascendentes: un modelo de construcción del infinito matemático desde la teoría APOE. Educación Matemática, 28(2), 119-150.
Weller, K., Brown, A., Dubinsky, E., McDonald, M. y Stenger, C. (2004). Intimations of Infinity. Notices of the AMS, 51(7), 741-750.
Wijeratne, C. y Zazkis, R (2016). Exploring conceptions of infinity via super-tasks: A case of Thomson’s Lamp and Green Alien. Journal of Mathematical Behavior, 42, 127-134. https://doi.org/10.1016/j.jmathb.2016.04.001
Published
Downloads
Copyright (c) 2022 Diana Villabona Millán, Solange Roa Fuentes, Asuman Oktaç
This work is licensed under a Creative Commons Attribution 4.0 International License.