Floating under examination in early childhood education classrooms. Assessment of teacher guidance level

Authors

  • Esther Paños Universidad de Castilla-La Mancha
  • Paula Martínez Rodenas Universidad de Castilla-La Mancha
  • José Reyes Ruiz-Gallardo Universidad de Castilla-La Mancha

Abstract

The study examines the understanding of the concept of floating in children aged 4 and 5 and the learning generated by using two methodological approaches which differ in teacher guidance level: responsive teaching (RT) and RT plus explicit instruction (RTEI). Initially, students find it difficult to conceptualize floating, have contradictory ideas and demonstrate limitations when trying to solve problems on the subject. They consider weight as a priority factor for an object to float or sink. The intervention improves students’ ability to describe the phenomenon and solve different tasks about floating, although this improvement is more significant in the groups that follow a RTEI approach. When differentiating by age, guidance influence is more pronounced in the youngest students. Therefore, we can conclude that explicit instruction must be considered when planning scientific content activities.

Keywords

Early childhood education, Science, Floating, Teacher guidance

References

Alsina, A. (2014). Procesos matemáticos en Educación Infantil: 50 ideas clave. Números. Revista de Didáctica de las Matemáticas, 86, 5-28.

Andersson, K. y Gullberg, A. (2014). What is science in preschool and what do teachers have to know to empower children? Cultural Studies of Science Education, 9(2), 275-296. https://doi.org/10.1007/s11422-012-9439-6

Barral, F. M. (1990). ¿Cómo flotan los cuerpos que flotan? Concepciones de los estudiantes. Enseñanza de las Ciencias, 8(3), 244-250.

Berger, K. S. (2007). Psicología del desarrollo: infancia y adolescencia. Ed. Médica Panamericana.

Brown, S. E. (1991). Experimentos de Ciencias en educación infantil. Narcea Ediciones.

Bryman, A. (2016). Social Research Methods. Oxford University Press.

Bulunuz, M. (2013). Teaching science through play in kindergarten : does integrated play and science instruction build understanding? European Early Childhood Education Research Journal, 21(2), 226-249. https://doi.org/10.1080/1350293X.2013.789195

Butts, D. P., Hofman, H. y Anderson, M. (1993). Is hands-on experience enough? A study of young children’s views of sinking and floating objects. Journal of Elementary Science Education, 5(1), 50-64. https://doi.org/10.1007/BF03170644

Canedo, S. P., Castelló, J. y García, P. (2010). Enseñanza-aprendizaje de las ciencias en Educación infantil: la construcción de modelos científicos precursores. Revista d’Innovació i Recerca en Educació, 3(1), 29-45.

Cárdenas, J. M. y Arancibia, H. (2014). Potencia estadística y cálculo del tamaño del efecto en G*Power: complementos a las pruebas de significación estadística y su aplicación en psicología. Salud & Sociedad, 5(2), 210-244. https://doi.org/10.22199/s07187475.2014.0002.00006

Christidou, V., Kazela, K., Kakana, D. y Valakosta, M. (2009). Teaching magnetic attraction to preschool children: a comparison of different approaches. The International Journal of Learning, 16(2), 115-128. https://doi.org/10.18848/1447-9494/CGP/v16i02/46130

Colgrove, A. (2012). Approaches to teaching young children science concepts and vocabulary and scientific problem-solving skills and role of classroom environment (tesis doctoral). Lincoln: University of Nebraska. https://digitalcommons.unl.edu/cehsdiss/155

COSCE (2011). Informe Enciende. Enseñanza de las Ciencias en la Didáctica Escolar para edades tempranas en España. https://www.cosce.org/pdf/Informe_ENCIENDE.pdf

Cruz-Guzmán, M., García-Carmona, A. y Criado, A. M. (2017). Aprendiendo sobre los cambios de estado en educación infantil mediante secuencias de pregunta-predicción-comprobación experimental. Enseñanza de las Ciencias, 35(3), 175-193. https://doi.org/10.5565/rev/ensciencias.2336

Cubo, S., Martín, M. y Ramos, J. (2011). Métodos de investigación y análisis de datos en ciencias sociales y de la salud. Pirámide.

Dentici, O. A., Grossi, M. G., Borghi, L., De Ambrosis, A. y Massara, C. I. (1984). Understanding floating: A study of children aged between six and eight years. European Journal of Science Education, 6(3), 235-243. https://doi.org/10.1080/0140528840060305

Early, D. M., Iruka, I. U., Ritchie, S., Barbarin, O. A., Winn, D. M. C., Crawford, G. M., Frome, P. M., Clifford, R. M., Burchinal, M., Howes, C., Bryant, D. M. y Pianta, R. C. (2010). How do pre-kindergarteners spend their time? Gender, ethnicity, and income as predictors of experiences in pre-kindergarten classrooms. Early Childhood Research Quarterly, 25(2), 177-193. https://doi.org/10.1016/j.ecresq.2009.10.003

Erden, F. T. y Sönmez, S. (2011). Study of turkish preschool teachers’ attitudes toward science teaching. International Journal of Science Education, 33(8), 1149-1168. https://doi.org/10.1080/09500693.2010.511295

Eshach, H. y Fried, M. N. (2005). Should science be taught in early childhood? Journal of Science Education and Technology, 14(3), 315-336. https://doi.org/10.1007/s10956-005-7198-9

Garbett, D. (2003). Science education in early childhood teacher education: Putting forward a case to enhance student teachers’ confidence and competence. Research in Science Education, 33(4), 467-481. https://doi.org/10.1023/B:RISE.0000005251.20085.62

Gómez-Motilla, C. y Ruiz-Gallardo, J. R. (2016). El rincón de la ciencia y la actitud hacia las ciencias en educación infantil. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(3), 643-666.https://doi.org/10.25267/rev_eureka_ensen_divulg_cienc.2016.v13.i3.10

Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M. y Fuccillo, J. (2009). Science in the preschool classroom: A programmatic research agenda to improve science readiness. Early Education and Development, 20(2), 238-264. https://doi.org/10.1080/10409280802595441

Gropen, J., Kook, J. F., Hoisington, C. y Clark-Chiarelli, N. (2017). Foundations of Science Literacy: Efficacy of a Preschool Professional Development Program in Science on Classroom Instruction, Teachers’ Pedagogical Content Knowledge, and Children’s Observations and Predictions. Early Education and Development, 28(5), 607-631. https://doi.org/10.1080/10409289.2017.1279527

Gutiérrez, F. (2010). El desarrollo intelectual durante la infancia. Las operaciones concretas. En J. A. García y J. Delval (Coords.), Psicología del Desarrollo I (pp. 237-264). UNED.

Hadzigeorgiou, Y. (2002). A study of the development of the concept of mechanical stability in preschool children. Research in Science Education, 32(3), 373-391. https://doi.org/10.1023/A:1020801426075

Hadzigeorgiou, Y. (2015). Young children’s ideas about physical science concepts. En K. C. Trundle y M. Saçkes (Eds.), Research in Early Childhood Science Education (pp. 67-98). Springer.

Harlen, W. (2003). Enseñanza y aprendizaje de las ciencias. Morata.

Havu-Nuutinen, S. (2005). Examining young children’s conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27(3), 259-279. https://doi.org/10.1080/0950069042000243736

Hong, S. Y. y Diamond, K. E. (2012). Two approaches to teaching young children science concepts, vocabulary, and scientific problem-solving skills. Early Childhood Research Quarterly, 27(2), 295-305. https://doi.org/10.1016/j.ecresq.2011.09.006

Hsin, C. y Wu, H. (2011). Using Scaffolding Strategies to Promote Young Children’s Scientific Understandings of Floating and Sinking. Journal of Science Education and Technology, 20, 656-666. https://doi.org/10.1007/s10956-011-9310-7

Impedovo, M. A., Delserieys-Pedregosa, A., Jégou, C. y Ravanis, K. (2017). Shadow Formation at Preschool from a Socio-materiality Perspective. Research in Science Education, 47(3), 579-601. https://doi.org/10.1007/s11165-016-9518-x

Kallery, M. (2004). Early years teachers’ late concerns and perceived needs in science: an exploratory study. European Journal of Teacher Education, 27(2), 147-165. https://doi.org/10.1080/026197604200023024

Kallery, M. (2015). Science in early years education: introducing floating and sinking as a property of matter. International Journal of Early Years Education, 23(1), 31-53. https://doi.org/10.1080/09669760.2014.999646

Kamii, C. y De Vries, R. (1993). Physical knowledge in preschool education: Implications of Piaget’s theory. Teachers College Press.

Kirschner, P. A., Sweller, J. y Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. https://doi.org/10.1207/s15326985ep4102_1

Koliopoulos, D., Tantaros, S. y Papandreou, M. (2004). Preschool Children’s Ideas about Floating: A Qualitative Approach. Journal of Science Education, 5(1), 21-24.

Larsson, J. (2016). Emergent science in preschool: The case of floating and sinking. International Research in Early Childhood Education, 7(3), 16-32.

MECD (2006). Real Decreto 1630/2006, de 29 de diciembre, por el que se establecen las enseñanzas mínimas de la Educación Infantil. BOE, 4, 474-482.

Morgan, P. L., Farkas, G., Hillemeier, M. M. y Maczuga, S. (2016). Science achievement gaps begin very early, persist, and are largely explained by modifiable factors. Educational Researcher, 45(1), 18-35. https://doi.org/10.3102/0013189X16633182

Nayfeld, I., Brenneman, K. y Gelman, R. (2011). Science in the Classroom: Finding a Balance Between Autonomous Exploration and Teacher-Led Instruction in Preschool Settings. Early Education and Development, 22(6), 970-988. https://doi.org/10.1080/10409289.2010.507496

Piaget, J. (1930). The child’s conception of physical reality. Kegan Paul, Trench, Trubner.

Piaget, J. (1970). Piaget’s Theory. En P. H. Mussen (Ed.), Manual of child psychology (pp. 703-732). John Wiley & Sons.

Saçkes, M., Trundle, K. C., Bell, R. L. y O’Connell, A. A. (2011). The influence of early science experience in kindergarten on children’s immediate and later science achievement: Evidence from the early childhood longitudinal study. Journal of Research in Science Teaching, 48(2), 217-235. https://doi.org/10.1002/tea.20395

Sweller, J. (2016). Working memory, long-term memory, and instructional design. Journal of Applied Research in Memory and Cognition, 5(4), 360-367. https://doi.org/10.1016/j.jarmac.2015.12.002

Tang, W. T., Yaw, K. Y. y Woei, L. M. O. (2017). An investigation of Singapore preschool children’s emerging concepts of floating and sinking. Pedagogies: An International Journal, 12(4), 325-339. https://doi.org/10.1080/1554480X.2017.1374186

Tenenbaum, H. R., Rappolt-Schlichtmann, G. y Zanger, V. V. (2004). Children’s learning about water in a museum and in the classroom. Early Childhood Research Quarterly, 19(1), 40-58. https://doi.org/10.1016/j.ecresq.2004.01.008

Trundle, K. C. (2015). The Inclusion of Science in Early Childhood Classrroms. En K. C. Trundle y M. Saçkes (Eds.), Research in Early Childhood Science Education (pp. 1-6). Springer.

Tu, T. (2006). Preschool science environment: What is available in a preschool classroom? Early Childhood Education Journal, 33(4), 245-251. https://doi.org/10.1007/s10643-005-0049-8

Van Hook, S. J. y Huziak-Clark, T. L. (2007). Tip-to-tail: Developing a conceptual model of magnetism with kindergartners using inquiry-based instruction. Journal of Elementary Science Education, 19, 45-58. https://doi.org/10.1007/BF03173662

Van Meeteren, B. y Zan, B. (2010). Revealing the Work of Young Engineers in Early Childhood Education. Early Childhood Research and Practice, 12(2).

Worth, K. (2010). Science in early childhood classrooms: Content and process. Early Childhood Research and Practice. SEED (STEM in Early Education and Development) Conference, 10, 1-118. Cedar Falls. http://ecrp.uiuc.edu/beyond/seed/worth.html

Published

2022-03-03

Downloads

Download data is not yet available.