Pattern generalization strategies and their different forms of use in fifth grade

Authors

Abstract

The article reports the strategies used by fifth grade primary school students, along with the different forms of use in solving three linear pattern generalization problems. The study is based on the proceeding forms and the different representational forms used to stablish a conclusion or answer a question. Seven types of strategies and fifteen forms of their use were identified and examined during six sessions in a teaching experiment. The findings highlight that counting and recursive strategies contributed in the children towards the use of strategies such as the difference, whole-object, chunking, functional and others. These strategies present from one to three different forms of use, thus manifesting the variety of paths used by children in the generalization of linear patterns.

Keywords

Generalization, Linear patterns, Strategies, Forms of use, Teaching experiment

References

Benedicto, C., Jaime, A. y Gutiérrez, Á. (2015). Análisis de la demanda cognitiva de problemas de patrones geométricos. En C. Fernández, M. Molina y N. Planas (Eds.), Investigación en Educación Matemática XIX (pp. 153-162). Alicante: SEIEM.

Blanton, M., Levi, L., Crites, T. y Dougherty, B. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: National Council of Teachers of Mathematics.

Blanton, M., Stephens, A., Knuth, E., Gardiner, A., Isler, I. y Kim, J. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39-87. https://doi.org/10.5951/jresematheduc.46.1.0039

Blanton, M. L. y Kaput, J. J. (2005). Helping elementary teachers build mathematical generality into curriculum and instruction. ZDM, 37(1), 34-42. https://doi.org/10.1007/bf02655895

Cañadas, M. C. (2007). Descripción y caracterización del razonamiento inductivo utilizado por estudiantes de educación secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas (tesis doctoral no publicada). Universidad de Granada, España. http://funes.uniandes.edu.co/282/

Cañadas, M. C. y Figueiras, L. (2011). Uso de representaciones y generalización de la regla del producto. Infancia y Aprendizaje, 34(4), 409-425. https://doi.org/10.1174/021037011797898449

Carraher, D. W. y Schliemann, A. D. (2018). Cultivating early algebraic thinking. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice. ICME-13 Monographs (pp. 107-138). Chaim, Suiza: Springer. https://doi.org/10.1007/978-3-319-68351-5_5

Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. En A. E. Kelly y R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 307-334). Mahwah, NJ: Lawrence Erlbaum Associates.

Dörfler, W. (1991). Forms and means of generalization in mathematics. En A. J. Bishop, S. Mellin- Olson y J. Van Dormolen (Eds.), Mathematical Knowledge: Its growth through teaching (pp. 63-88). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-2195-0_4

El Mouhayar R. y Jurdak, J. (2015). Variation in strategy use across grade level by pattern generalization types. International Journal of Mathematical Education in Science and Technology, 46(4), 553-569. https://doi.org/10.1080/0020739x.2014.985272

Jurdak, M. E. y El Mouhayar, R. R. (2014). Trends in the development of student level of reasoning in pattern generalization tasks across grade level. Educational Studies in Mathematics, 85(1), 75-92. https://doi.org/10.1007/s10649-013-9494-2

Kaput, J. (1999). Teaching and learning a new algebra. En E. Fennema y T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). Mahwah, NJ: Lawrence Erlbaum Associates.

Kieran, C., Pang, J., Schifter, D. y Ng, S. F. (2016). Early algebra. Research into its nature, its learning, its teaching. Nueva York: Springer. https://doi.org/10.1007/978-3-319-32258-2

Krems, J. F. (1995). Cognitive flexibility and complex problem solving. En P. A. Frensch y J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 201-218). Nueva York: Psychology Press.

Lannin, J., Barker, D. y Townsend, B. (2006). Algebraic generalisation strategies: factors influencing student strategy selection. Mathematics Education Research Journal, 18(3), 3-28. https://doi.org/10.1007/BF03217440

Lupiáñez, J. (2016). Sistemas de representación. En L. Rico y A. Moreno (Eds.), Elementos de didáctica de la matemática para el profesor de secundaria (pp. 119-137). Granada, España: Ediciones Pirámide.

Markworth, K. A. (2010). Growing and growing: promoting functional thinking with geometric growing patterns (tesis doctoral no publicada). University of North Carolina, Chapel Hill. https://core.ac.uk/download/pdf/210600357.pdf

Merino, E., Cañadas, M. C. y Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización. Edma 0-6: Educación Matemática en la Infancia, 2(1), 24-40.

Mulligan, J. y Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544

Pinto, E. (2019). Relaciones funcionales, sistemas de representación y generalización en estudiantes de tercero de primaria (trabajo final de máster no publicado). Universidad de Granada, España.

Radford, L. (2018). The Emergence of Symbolic Algebraic Thinking in Primary School. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice. ICME-13 Monographs (pp. 3-25). Nueva York: Springer. https://doi.org/10.1007/978-3-319-68351-5_1

Radford, L. (2008). Iconicity and contraction: a semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM, 40(1), 83-96. https://doi.org/10.1007/s11858-007-0061-0

Rico, L. (1997). Consideraciones sobre el currículo de matemáticas para educación secundaria. En L. Rico, E. Castro, E. Castro, M. Coriat, A. Marín, L. Puig, M. Sierra y M. M. Socas (Eds.), La educación matemática en la enseñanza secundaria (pp. 15-38). Madrid: ice-Horsori.

Rico, L., Castro, E. y Romero, I. (2000). Sistemas de representación y aprendizajes de estructuras numéricas. Granada, España: Universidad de Granada.

Rivera, F. (2013). Teaching and learning patterns in school mathematics. Psychological and pedagogical considerations. Nueva York: Springer. https://doi.org/10.1007/978-94-007-2712-0

Rivera, F. D. (2010). Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73(2), 297-328. https://doi.org/10.1007/s10649-009-9222-0

Rivera, F. D. (2018). Pattern generalization processing of elementary students: cognitive factors affecting the development of exact mathematical structures. Eurasia Journal of Mathematics, Science and Technology Education, 14(9), em1586. https://doi.org/10.29333/ejmste/92554

Rivera, F. D. y Becker, J. R. (2008). Middle school children’s cognitive perceptions of constructive and deconstructive generalizations involving linear figural patterns. ZDM, 40(1), 65-82. https://doi.org/10.1007/s11858-007-0062-z

Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. En J. J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 133-160). Nueva York: Routledge.

Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20(2), 147-164. https://doi.org/10.1007/BF00579460

Warren, E. y Cooper, T. (2006). Using repeating patterns to explore functional thinking. Australian Primary Mathematics Classroom, 11(1), 9-14.

Zapatera, A. (2018). Cómo alumnos de educación primaria resuelven problemas de generalización de patrones. Una trayectoria de aprendizaje. Revista Latinoamericana de Investigación en Matemática Educativa, 21(1), 87-114. https://dx.doi.org/10.12802/relime.18.2114

Published

03-03-2022

Downloads

Download data is not yet available.