Mental mechanism of synthesis in the learning of the Sierpinski triangle as a totality
Abstract
Fractal geometry constitutes a field of study that integrates several concepts of school mathematics, among them, perimeter, area, self-similarity, iteration, succession, functions and infinity. Thus, the fractal Sierpinski triangle is chosen with the aim of proposing a cognitive model for its learning. Based on the APOS theory (action, process, object and scheme), mental structures and mechanisms that can be constructed by high school students who develop a sequence of written activities are described. The empirical results report that the fractal under study is built as a totality from a mental mechanism that has been called synthesis, a mechanism that could open new development opportunities for the APOS theory.
Keywords
Educational Mathematics, Sierpinski triangle, APOS theory, Totality, Synthesis mechanismReferences
Adams, H. y Russ, J. (1992). Chaos in the classroom: Exposing gifted elementary school children to chaos and fractals. Journal of Science Education and Technology, 1(3), 191-209. https://doi.org/10.1007/BF00701363
Alsina, A. (2009). El aprendizaje realista: una contribución de la investigación en Educación Matemática a la formación del profesorado. En M. J. González, M. T. González y J. Murillo (Eds.), Investigación en Educación Matemática XIII (pp. 119-127). Santander: SEIEM.
Apkarian, N., Tabach, M., Dreyfus, T. y Rasmussen, C. (2019). The Sierpinski smoothie: blending area and perimeter. Educational Studies in Mathematics, 101, 19-34. https://doi.org/10.1007/s10649-019-09889-4
Arcavi, A. (2018). Hacia una visión integradora de la enseñanza y el aprendizaje de las matemáticas. Educación Matemática, 30(2), 33-48. https://doi.org/10.24844/EM3002.02
Arnon, I., Cottril, J., Dubinsky, E., Oktaç, A., Roa, S., Trigueros, M. y Weller, K. (2014). APOS Theory. A framework for research and curriculum development in mathematics education. Nueva York: Springer-Verlag. https://doi.org/10.1007/978-1-4614-7966-6
Barrio, J. (1989). El grupo de las transformaciones de Piaget. Revista Española de Pedagogía, 47(183), 205-243. https://www.jstor.org/stable/23763768
Brown, A., McDonald, M. y Weller, K. (2008). Step by step: Infinite iterative processes and actual infinity. En F. Hitt, D. Holton y P. Thompson (Eds.), CBMS Issues in Mathematics Education: Vol. 16. Research in Collegiate Mathematics Education VII (pp. 115-142). Washington, DC: The American Mathematical Society. https://doi.org/10.1090/cbmath/016
Chabert, J.-L. (1990). Un demi-siecle de fractales: 1870-1920. Historia Mathematica, 17(4), 339-365. https://doi.org/10.1016/0315-0860(90)90026-A
Dreyfus, T. (1991). Advanced mathematical thinking processes. En D. Tall (Ed.), Advanced Mathematical Thinking (pp. 25-41). https://doi.org/10.1007/0-306-47203-1
Dreyfus, T. (2015). Constructing abstract mathematical knowledge in context. En S. J. Cho (Ed.), Selected Regular lectures from the 12th International Congress on Mathematical Education (pp. 115-133). https://doi.org/10.1007/978-3-319-17187-6
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. En D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123). Dordrecht: Kluwer. https://doi.org/10.1007/0-306-47203-1_7
Dubinsky, E., Arnon, I. y Weller, K. (2013). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: The case of 0.999 and 1. Canadian Journal of Science, Mathematics, and Technology Education, 13(3), 232-258. https://doi.org/10.1080/14926156.2013.816389
Dubinsky, E., Weller, K., Stenger, C. y Vidakovic, D. (2008). Infinitive iterative processes: The tennis ball problem. European Journal of Pure and Applied Mathematics, 1(1), 99-121. https://www.ejpam.com/index.php/ejpam/article/view/48/17
Echeverría, R. (1997). El búho de Minerva. Santiago, Chile: Dolmen Ediciones.
Garbin, S. (2005a). Ideas del infinito, percepciones y conexiones en distintos contextos: El caso de estudiantes con conocimientos previos de cálculo. Enseñanza de las Ciencias, 23(1), 61-80. https://www.raco.cat/index.php/Ensenanza/article/view/22005
Garbin, S. (2005b). ¿Cómo piensan los alumnos entre 16 y 20 años el infinito? La influencia de los modelos, las representaciones y los lenguajes matemáticos. Revista Latinoamericana de Investigación en Matemática Educativa, 8(2), 169-193. https://www.redalyc.org/articulo.oa?id=33580205
Garbin, S. (2007). La problemática fractal: un punto de vista cognitivo con interés didáctico. Paradigma, 2, 79-80. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1011-22512007000200004&lng=es&tlng=pt
Garbin, S. y Azcárate, C. (2002). Infinito actual e inconsistencias: Acerca de las incoherencias en los esquemas conceptuales de alumnos de 16-17 años. Enseñanza de las Ciencias, 20(1), 87-113. https://www.raco.cat/index.php/Ensenanza/article/view/21786
Godino, J., Batanero, C. y Font, V. (2008). Un enfoque ontosemiótico del conocimiento y la instrucción matemática. Acta Scientiae. Revista de Ensino de Ciências e Matemática, 10, 7-37. http://www.ugr.es/~jgodino/funciones-semioticas/sintesis_eos_10marzo08.pdf
Gray, E. y Tall, D. (2007). Abstraction as a natural process of mental compression. Mathematics Education Research Journal, 19(2), 23-40. https://doi.org/10.1007/BF03217454
Hershkowitz, R., Hadas, N., Dreyfus, T. y Schwarz, B. (2007). Abstracting processes, from individual’s construction of knowledge to a group’s «shared knowledge». Mathematics Education Research Journal, 19(2), 41-68. https://doi.org/10.1007/BF03217455
Karakus, F. (2015). Investigation into how 8th grade students define fractals. Educational Sciences: Theory & Practice, 15(3), 825-836. https://doi.org/10.12738/estp.2015.3.2429
Klein, F. (1924). Elementary mathematics from an advanced standpoint: aritmetic, algebra, analysis. Nueva York: Dover.
Mason, J. (1989). Mathematical abstraction as the result of a delicate shift of attention. For the Learning of Mathematics, 9(2), 2-9. https://www.jstor.org/stable/40247947
Peitgen, H., Jürgen, H. y Saupe, D. (2004). Chaos and Fractals. Nueva York: Springer. https://doi.org/10.1007/b97624
Piaget, J. (2000). El nacimiento de la inteligencia en el niño. Barcelona: Crítica.
Sabogal, S. y Arenas, G. (2011). Una introducción a la geometría fractal. Bucaramanga: Universidad Industrial de Santander.
Sierpinski, W. (1915). Sur une courbe dont tout point est un point de ramification. En Comptes Rendus Hebdomadaires des Séances de I’Académie des Sciences (pp. 302-305). París: Gauthier Villars et compagnie, Imprimeurs Libraires.
Stake, R. E. (2010). Investigación con estudio de casos. Barcelona: Labor.
Stenger, C., Weller, K., Arnon, I., Dubinsky, E. y Vidakovic, D. (2008). A Search for a Constructivist Approach for Understanding the Uncountable Set. Revista Latinoamericana de Investigación en Matemática Educativa, 11(1), 93-125. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-24362008000100004&lng=es&tlng=
Thurston, W. (1990). Mathematical education. Notices of the AMS, 37, 844-850. https://arxiv.org/pdf/math/0503081v1.pdf
Tsamir, P. y Dreyfus, T. (2002). Comparing infinite sets – a process of abstraction. The case of Ben. Journal of Mathematical Behavior, 21, 1-23. https://doi.org/10.1016/S0732-3123(02)00100-1
Villabona, D. y Roa, S. (2016). Procesos iterativos infinitos y objetos trascendentes: un modelo de construcción del infinito matemático desde la teoría APOE. Educación Matemática, 28(2), 119-150. https://doi.org/10.24844/EM2802.05
Weller, K., Arnon, I. y Dubinsky, E. (2011). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion: Strength and stability of belief. Canadian Journal of Science, Mathematics, and Technology Education, 11, 129-159. https://doi.org/10.1080/14926156.2011.570612
Published
Downloads
Copyright (c) 2021 Ximena Raquel Gutiérrez Figueroa, Marcela Cecilia Parraguez González

This work is licensed under a Creative Commons Attribution 4.0 International License.