Pre-service teachers’ discourse when describing and defining geometric solids
Abstract
In this work, we study the mathematical practice of defining among pre-service teachers. This research has been carried out using a sociocultural theoretical framework: the theory of commognition (Sfard, 2008), which considers mathematics as a particular type of discourse and thus the discourse becomes the focus of study. A research instrument was designed with 9 questions about the description and definition of geometric solids, which made it possible to access pre-service teachers’ spoken and written discourse. The analysis of this discourse has allowed the identification of discursive properties (narratives, word use, visual mediators, routines and meta-rules) with the aim of inferring commognitive conflicts whose resolution could lead to mathematical learning.Keywords
Commognitive conflict, Discourse, Mathematical practice of defining, Pre-service teachers, Theory of commognitionReferences
Alvarado, A. y González-Astudillo, M. T. (2014). Definir, buscar ejemplos, conjeturar… para probar si un número es feliz. AIEM - Avances de Investigación en Educación Matemática, 5, 5-24. https://doi.org/10.35763/aiem.v1i5.73
Alvarado Monroy, A. y González Astudillo, M. T. (2016). Construcción social de los procesos de definir y demostrar. Educaçao Matemática Pesquisa, 18(2), 527-549.
De Villiers, M. (1998). To teach definition or to teach to define? En A. Olivier y K. Newstead (Eds.), Proceedings of the 22nd Annual Meeting of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 248-255). Stellenbosch, Sudáfrica: PME.
Fernández-León, A. y Gavilán-Izquierdo, J. M. (2019). Avanzando en la caracterización de las prácticas matemáticas de conjeturar y probar de los matemáticos profesionales. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 271-280). Valladolid: SEIEM.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, Países Bajos: D. Reidel Publishing Company.
Gavilán-Izquierdo, J. M., Martín-Molina, V., González-Regaña, A. J., Toscano, R. y Fernández-León, A. (2019). Cómo construyen definiciones matemáticas los estudiantes para maestro: Una aproximación sociocultural. En E. Badillo Jiménez, N. Climent Rodríguez, C. Fernández Verdú y M. T. González Astudillo (Eds.), Investigación sobre el profesor de matemáticas: Práctica de aula, conocimiento, competencia y desarrollo profesional (pp. 133-155). Salamanca: Ediciones Universidad de Salamanca.
Gavilán Izquierdo, J. M., Sánchez-Matamoros, G. y Escudero, I. (2014). Aprender a definir en Matemáticas: Estudio desde una perspectiva sociocultural. Enseñanza de las Ciencias, 32(3), 529-550. https://doi.org/10.5565/rev/ensciencias.1313
Gilboa, N., Kidron, I. y Dreyfus, T. (2019). Constructing a mathematical definition: The case of the tangent. International Journal of Mathematical Education in Science and Technology, 50(3), 421-446. https://doi.org/10.1080/0020739X.2018.1516824
Gutiérrez, A. y Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning Problems in Mathematics, 20(2/3), 27-46.
Heyd-Metzuyanim, E., Tabach, M. y Nachlieli, T. (2016). Opportunities for learning given to prospective mathematics teachers: Between ritual and explorative instruction. Journal of Mathematics Teacher Education, 19(6), 547-574. https://doi.org/10.1007/s10857-015-9311-1
Ioannou, M. (2018). Commognitive analysis of undergraduate mathematics students’ first encounter with the subgroup test. Mathematics Education Research Journal, 30(2), 117-142. https://doi.org/10.1007/s13394-017-0222-6
Jayakody, G. (2015). Commognitive conflicts in the discourse of continuous functions. En T. Fukawa-Connelly, N. Infante, K. Keene y M. Zandieh (Eds.), Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 611-619). Pittsburgh, PA: The Special Interest Group of the Mathematics Association of America (SIGMAA) for Research in Undergraduate Mathematics Education.
Kobiela, M. y Lehrer, R. (2015). The codevelopment of mathematical concepts and the practice of defining. Journal for Research in Mathematics Education, 46(4), 423-454. https://doi.org/10.5951/jresematheduc.46.4.0423
Lakatos, I. (1976). Proof and refutations: The logic of mathematical discovery. Cambridge, GB: Cambridge University Press.
Lavie, I., Steiner, A. y Sfard, A. (2019). Routines we live by: From ritual to exploration. Educational Studies in Mathematics, 101(2), 153-176. https://doi.org/10.1007/s10649-018-9817-4
Lerman, S. (2001). Cultural, discursive psychology: A sociocultural approach to studying the teaching and learning of mathematics. Educational Studies in Mathematics, 46(1-3), 87-113. https://doi.org/10.1023/A:1014031004832
Linchevsky, L., Vinner, S. y Karsenty, R. (1992). To be or not to be minimal? Student teachers’ views about definitions in geometry. En W. Geeslin y K. Graham (Eds.), Proceedings of the 16th Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 48-55). Durham, NH: PME.
Martín-Molina, V., Toscano, R., González-Regaña, A. J., Fernández-León, A. y Gavilán-Izquierdo, J. M. (2018). Analysis of the mathematical discourse of university students when describing and defining geometrical figures. En E. Bergqvist, M. Österholm, C. Granberg y L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 355-362). Umeå, Suecia: PME.
Nardi, E., Ryve, A., Stadler, E. y Viirman, O. (2014). Commognitive analyses of the learning and teaching of mathematics at university level: The case of discursive shifts in the study of Calculus. Research in Mathematics Education, 16(2), 182-198. https://doi.org/10.1080/14794802.2014.918338
Planas, N. (2010). Las teorías socioculturales en la investigación en educación matemática: Reflexiones y datos bibliométricos. En M. M. Moreno, A. Estrada, J. Carrillo y T. A. Sierra (Eds.), Investigación en Educación Matemática XIV (pp. 163-195). Lleida: SEIEM.
Pólya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
Rasmussen, C., Zandieh, M., King, K. y Teppo, A. (2005). Advancing mathematical activity: A practice-oriented view of advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 51-73. https://doi.org/10.1207/s15327833mtl0701_4
Sánchez, V. y García, M. (2014). Socio-mathematical and mathematical norms related to definition in pre-service primary teachers’ discourse. Educational Studies in Mathematics, 85(2), 305-320. https://doi.org/10.1007/s10649-013-9516-0
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. En D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning: A project of the National Council of Teachers of Mathematics (pp. 334-370). Nueva York: Macmillan Publishing.
Schüler-Meyer, A. (2018). Defining as discursive practice in transition – Upper Secondary students reinvent the formal definition of convergent sequences. En V. Durand-Guerrier, R. Hochmuth, S. Goodchild y N. M. Hogstad (Eds.), Proceedings of INDRUM 2018 Second Conference of the International Network for Didactic Research in University Mathematics (pp. 537-546). Kristiansand, Noruega: University of Agder e INDRUM.
Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 567-615. https://doi.org/10.1080/10508400701525253
Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. Cambridge, GB: Cambridge University Press.
Tabach, M. y Nachlieli, T. (2015). Classroom engagement towards using definitions for developing mathematical objects: The case of function. Educational Studies in Mathematics, 90(2), 163-187. https://doi.org/10.1007/s10649-015-9624-0
Tall, D. (Ed.) (1991). Advanced Mathematical Thinking. Dordrecht, Países Bajos: Kluwer.
Thoma, A. y Nardi, E. (2018). Transition from school to university mathematics: Manifestations of unresolved commognitive conflict in first year students’ examination scripts. International Journal of Research in Undergraduate Mathematics Education, 4(1), 161-180. https://doi.org/10.1007/s40753-017-0064-3
Viirman, O. y Nardi, E. (2019). Negotiating different disciplinary discourses: Biology students’ ritualized and exploratory participation in mathematical modeling activities. Educational Studies in Mathematics, 101(2), 233-252. https://doi.org/10.1007/s10649-018-9861-0
Wang, S. y Kinzel, K. (2014). How do they know it is a parallelogram? Analysing geometric discourse at van Hiele Level 3. Research in Mathematics Education, 16(3), 288-305. https://doi.org/10.1080/14794802.2014.933711
Yackel, E., Rasmussen, C. y King, K. (2000). Social and sociomathematical norms in an advanced undergraduate mathematics course. Journal of Mathematical Behavior, 19(3), 275-287. https://doi.org/10.1016/S0732-3123(00)00051-1
Zandieh, M. y Rasmussen, C. (2010). Defining as a mathematical activity: A framework for characterizing progress from informal to more formal ways of reasoning. Journal of Mathematical Behavior, 29(2), 57-75. https://doi.org/10.1016/j.jmathb.2010.01.001
Published
Downloads
Copyright (c) 2021 Autor

This work is licensed under a Creative Commons Attribution 4.0 International License.