The hypothetical learning trajectories: an example in a linear algebra course
Abstract
This article proposes and evaluates a hypothetical learning trajectory (HLT) for the concepts of span and spanning set. This HLT was designed following the approach of Simon (1995), the design heuristics of emergent models and the mechanism of reflection on activity-effect relationship. We carried out an experiment with university students to determine if this HLT contributed to the expected learning of these concepts. We contrast this HLT with the actual learning trajectory (ALT) of two students showing approximation to key phases of the designed HLT. The results show that the notion of set is useful for the construction of the concept of span. In addition, we found it is necessary to incorporate new questions in HLT that facilitate the reflection on the activity-effect relationship to better account for the learning progression.Keywords
Hypothetical learning trajectory, Emergent models, Activity-effect, Linear algebraReferences
Andrews-Larson, C., Wawro, M. y Zandieh, M. (2017). A hypothetical learning trajectory for conceptualizing matrices as linear transformations. International Journal of Mathematical Education in Science and Technology, 48(6), 809-829. https://doi.org/10.1080/0020739X.2016.1276225
Bakker, A. y Van Eerde, H. A. A. (2015). An introduction to design based research with an example from Statistics Education. En A. Bikner-Ahsbahs, C. Knipping y N. Presmeg (Eds.), Doing qualitative research: Methodology and methods in mathematics education (pp. 429-466). Nueva York: Springer.
Cárcamo, A., Fortuny J. y Gómez, J. (2017). Mathematical modelling and the learning trajectory: tools to support the teaching of Linear Algebra. International Journal of Mathematical Education in Science and Technology, 48(3), 38-352. https://doi.org/10.1080/0020739X.2016.1241436
Cárcamo, A., Gómez, J. y Fortuny, J. (2016). Mathematical modelling in engineering: A proposal to introduce Linear Algebra concepts. Journal of Technology and Science Education, 6(1), 62-70. https://doi.org/10.3926/jotse.177
Carlson, D. (1997). Teaching Linear Algebra: Must the fog always roll in? En D. Carlson, C. R. Johnson, D. C. Lay, A. D. Porter, A. Watkins y W. Watkins (Eds.), Resources for Teaching Linear Algebra-MAA Notes (vol. 42, pp. 39-51). Washington: MAA.
Clements, D. H. y Sarama, J. (2014). Learning and teaching early math: The learning trajectories approach (2.ª ed.). Nueva York: Routledge.
Cobb, P. y Gravemeijer, K. (2008). Experimenting to support and understand learning processes. En A. Kelly, R. Lesh y J. Baek (Eds.), Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching (pp. 68-95). Nueva Jersey: Erlbaum.
Dierdorp, A., Bakker, A., Eijkelhof, H. y van Maanen, J. (2011). Authentic practices as contexts for learning to draw inferences beyond correlated data. Mathematical Thinking and Learning, 13(1-2), 132-151. https://doi.org/10.1080/10986065.2011.538294
Dorier, J. y Sierpinska, A. (2001). Research into the teaching and learning of Linear Algebra. En D. Holton D, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss y A. Schoenfeld (Eds.), The Teaching and Learning of Mathematics at University Level: New ICMI Study Series (vol. 7, pp. 255-273). Dordrecht: Kluwer.
González, D. y Roa-Fuentes, S. (2017). Un esquema de transformación lineal: construcción de objetos abstractos a partir de la interiorización de acciones concretas. Enseñanza de las Ciencias, 35(2), 89-107. https://doi.org/10.5565/rev/ensciencias.2150
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155-177. https://doi.org/10.1207/s15327833mtl0102_4
Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. En W. Blum, P. Galbraith, H. Henn y M. Niss (Eds.), Modelling and Applications in Mathematics Education (pp. 137-144). Nueva York: Springer.
Gravemeijer, K., Cobb, P., Bowers, J. y Whitenack, J. (2000). Symbolizing, modeling, and instructional design. En P. Cobb, E. Yackel y K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 225-273). Nueva Jersey: Erlbaum.
Gravemeijer, K. y van Eerde, D. (2009). Design research as a means for building a knowledge base for teachers and teaching in Mathematics Education. The Elementary School Journal, 109(5), 510-524. https://doi.org/10.1086/596999
Kú, D. (2012). Análisis sobre la comprensión de los conceptos conjunto generador y espacio generado desde la mirada de la teoría APOE (tesis doctoral). Ciudad de México: Instituto Politécnico Nacional.
Leikin, R. y Dinur, S. (2003). Patterns of flexibility: Teachers’ behavior in mathematical discussion. Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education. Bellaria, Italia. Obtenido el 9 de abril de 2020 de https://pdfs.semanticscholar.org/cb4a/d5bee79fa96ac21ceee1d3cd28f8e19efb4a.pdf
Nardi, E. (1997). El encuentro del matemático principiante con la abstracción matemática: Una imagen conceptual de los conjuntos generadores en el análisis vectorial. Educación Matemática, 9(1), 47-60.
Piaget, J. (2001). Studies in reflecting abstraction. Sussex, Reino Unido: Psychology Press.
Rasmussen, C. y Blumenfeld, H. (2007). Reinventing solutions to systems of linear differential equations: A case of emergent models involving analytic expressions. The Journal of Mathematical Behavior, 26(3), 195-210. https://doi.org/10.1016/j.jmathb.2007.09.004
Salgado, H. (2015). El papel de la modelización en la enseñanza de conceptos abstractos del Álgebra Lineal (tesis doctoral). Ciudad de México: Instituto Politécnico Nacional.
Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145. https://doi.org/10.2307/749205
Simon, M. A. (2014). Hypothetical learning trajectories in Mathematics Education. En S. Leman (Ed.), Encyclopedia of Mathematics Education (pp. 272-275). Países Bajos: Springer.
Simon, M. A. y Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91-104. https://doi.org/10.1207/s15327833mtl0602_2
Simon, M. A., Tzur, R., Heinz, K. y Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305-329. https://doi.org/10.2307/30034818
Steffe, L. P. y Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. En R. Lesh y A. E. Kelly (Eds.), Research on design in Mathematics and Science Education (pp. 267-307). Nueva Jersey: Erlbaum.
Stewart, S. y Thomas, M. O. (2010). Student learning of basis, span and linear independence in Linear Algebra. International Journal of Mathematical Education in Science and Technology, 41(2), 173-188. https://doi.org/10.1080/00207390903399620
Thomas, M. O. y Stewart, S. (2011). Eigenvalues and eigenvectors: Embodied, symbolic and formal thinking. Mathematics Education Research Journal, 23(3), 275-296. https://doi.org/10.1007/s13394-011-0016-1
Trigueros, M. (2019). The development of a linear algebra schema: learning as result of the use of a cognitive theory and models. ZDM, 51(7), 1055-1068. https://doi.org/10.1007/s11858-019-01064-6
Trigueros, M. y Possani, E. (2013). Using an economics model for teaching Linear Algebra. Linear Algebra and its Applications, 438(4), 1779-1792. https://doi.org/10.1016/j.laa.2011.04.009
Tzur, R. (2019). HLT: A Lens on conceptual transition between mathematical «markers». En D. Siemon, T. Barkatsas y R. Seah (Eds.), Researching and learning progressions (trajectories) in mathematics education (pp. 56-74). Boston: Brill Sense.
Tzur, R. (2007). Fine grain assessment of students’ mathematical understanding: participatory and anticipatory stages in learning a new mathematical conception. Educational Studies in Mathematics, 66(3), 273-291. https://doi.org/10.1007/s10649-007-9082-4
Tzur, R. y Simon, M. (2004). Distinguishing two stages of mathematics conceptual learning. International Journal of Science and Mathematics Education, 2(2), 287-304. https://doi.org/10.1007/s10763-004-7479-4
Wawro, M., Larson, C., Zandieh, M. y Rasmussen, C. (2012). A hypothetical collective progression for conceptualizing matrices as linear transformations. En S. Brown, S. Larsen, K. Marrongelle y M. Oehrtman (Eds.), Proceedings of the 15th annual Conference on Research in Undergraduate Mathematics Education (pp. 465-479). Portland: RUME.
Zandieh, M. y Rasmussen, C. (2010). Defining as a mathematical activity: A framework for characterizing progress from informal to more formal ways of reasoning. The Journal of Mathematical Behavior, 29(2), 57-75. https://doi.org/10.1016/j.jmathb.2010.01.001
Published
Downloads
Copyright (c) 2021 Autor
This work is licensed under a Creative Commons Attribution 4.0 International License.