Sequence of partial sums as an infinite iterative process: a step towards the understanding of numerical series from an APOS perspective

Authors

  • Myriam Codes Valcarce Universidad de Salamanca
  • Alejandro S. González-Martín Université de Montréal

Abstract

Learning infinite series entails many difficulties. In this paper, we focus on how students learn one aspect of the concept of infinite series: the sequence of partial sums as an infinite iterative process. The learning process of two groups of first-year university students was analysed using the genetic decomposition of the sequence of partial sums as an infinite iterative process. Different manifestations of action and process conceptions were observed in both groups. The differences in the ways the students grasped the sequence of partial sums reveal the importance of some key mathematical elements for understanding infinite series.

Keywords

sequence of partial sums, infinite series, infinite iterative process, limit, infinity

Author Biographies

Myriam Codes Valcarce, Universidad de Salamanca

Departamento de Didáctica de la Matemática y de las Ciencias Experimentales (Facultad de Educación). Profesor asociado

Alejandro S. González-Martín, Université de Montréal

Professeur agrégé
Responsable du Module de qualification en enseignement

Département de Didactique 
Faculté des Sciences de l'Éducation 

Published

2017-03-03

Downloads

Download data is not yet available.