Perfiles de estudiantes para profesor de matemáticas al mirar profesionalmente el razonamiento proporcional
Resum
El estudio caracteriza perfiles de la competencia mirar profesionalmente el razonamiento proporcional de 14 estudiantes para profesor de matemáticas de secundaria, al identificar e interpretar características del razonamiento proporcional y decidir sobre cómo continuar la enseñanza. Identificamos tres perfiles de estudiantes para profesor considerando el desempeño en las destrezas (atender, interpretar y decidir): perfil notable, caracterizado por un desempeño alto en las tres destrezas; perfil mixto, caracterizado por un desempeño desigual; y perfil emergente, que evidencia dificultades significativas en las tres destrezas. Estos perfiles revelan dos características en el aprendizaje de esta competencia docente: i) la dificultad de los estudiantes para profesor, al considerar al mismo tiempo varios elementos matemáticamente relevantes; y ii) la no linealidad entre las destrezas.
Paraules clau
Mirar profesionalmente, Razonamiento proporcional, Estudiantes para profesor, Desarrollo de competencias docentes, Formación de profesores de matemáticasReferències
Amador, J. M., Glassmeyer, D., & Brakoniecki, A. (2025). Teachers’ noticing of proportional reasoning. Journal of Mathematics Teacher Education, 28(4), 879-907. https://doi.org/10.1007/s10857-024-09625-7
Barnhart, T. & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83-93. https://doi.org/10.1016/j.tate.2014.09.005
Buforn, À., Llinares, S., Coles, A., & Brown, L. C. (2022). Pre-service teachers’ knowledge of the unitizing process in recognizing students’ reasoning to propose teaching decisions. International Journal of Mathematical Education in Science and Technology, 53(2), 425-443. https://doi.org/10.1080/0020739x.2020.1777333
Buforn, À., Llinares, S., & Fernández, C. (2018). Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. Revista Mexicana de Investigación Educativa, 23(76), 229-251.
Burgos, M. & Godino, J. (2022). Prospective primary school teachers’ competence for the cognitive analysis of students’ solutions to proportionality tasks. Journal of Mathematik-Didactik, 43, 347-376. https://doi.org/10.1007/s13138-021-00193-4
Copur-Gencturk, Y., Baek, C., & Doleck, T. (2023). A closer look at teachers’ proportional reasoning. International Journal of Science and Mathematics Education, 21(1), 113-129. https://doi.org/10.1007/s10763-022-10249-7
Cramer, K. & Post, T. (1993). Proportional reasoning. The Mathematics Teacher, 86, 404-407.
Dindyal, J., Schack, E., Choy, B. H., & Gamoran, M. (2021). Exploring the terrains of mathematics teacher noticing. ZDM Mathematics Education, 53(1), 1-16. https://doi.org/10.1007/s11858-021-01249-y
Espinoza-González, J., Buforn, À., & Llinares, S. (2025). Anexo 1. Diagramas con las puntuaciones asignadas a cada grupo de estudiantes para profesor en las tres destrezas según los tres niveles de razonamiento proporcional. [Archivo de datos]. Figshare. https://doi.org/10.6084/m9.figshare.29803679.v3
Fernández, C., Valls, J., & Llinares, S. (2011). El desarrollo de un esquema para caracterizar la competencia docente «mirar con sentido» el pensamiento matemático de los estudiantes. En M. Marín et al. (Eds.), Investigación en Educación Matemática XV (pp. 351-360). SEIEM.
Fernández, C. & Llinares, S. (2012). Características del desarrollo del razonamiento proporcional en la educación primaria y secundaria. Enseñanza de las Ciencias, 30(1), 129-142. https://doi.org/10.5565/rev/ec/v30n1.596
Jacobs, V. R., Empson, S. B., Jessup, N., Dunning, A., Pynes, D., Krause, G., & Franke, T. M. (2024). Profiles of teachers’ expertise in professional noticing of children’s mathematical thinking. Journal of Mathematics Teacher Education, 27(3), 295-324. https://doi.org/10.1007/s10857-022-09558-z
Jacobs, V. R., Lamb, L. C., & Philipp, R.A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. https://doi.org/10.5951/jresematheduc.41.2.0169
Kaput, J. & West, M. M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. En G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 235-287). State University of New York Press.
Lamon, S. (1993). Ratio and proportion: Children’s cognitive and metacognitive processes. En T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational Numbers: An Integration of Research (pp. 131-156). Lawrence Erlbaum Associates.
Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework. En F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 629-669). Information Age Publishing.
Lobato, J., Ellis, A. B., & Zbiek, R. M. (2010). Developing essential understanding of ratios, proportions, and proportional reasoning for teaching mathematics: Grades 6-8. National Council of Teachers of Mathematics.
Mason, J. (2002). Researching your own practices: The discipline of noticing. Routledge.
Moreno, M., Valls, J., Sánchez-Matamoros, G., & Aráuz, D. F. (2025). Desarrollo profesional de futuros docentes de matemáticas de educación secundaria. Enseñanza de las Ciencias, 43(2), 61-80. https://doi.org/10.5565/rev/ensciencias.6320
Moreno, M., Sánchez-Matamoros, G., & Valls, J. (2025). Influence of professional materials on the decision-making of preservice secondary teachers when noticing students’ mathematical thinking. Education Sciences, 15(4), 418. https://doi.org/10.3390/educsci15040418
Noelting, G. (1980a). The development of proportional reasoning and the ratio concept. Part I— Differentiation of stages. Educational Studies in Mathematics, 11(2), 217-253. https://doi.org/10.1007/BF00304357
Noelting, G. (1980b). The development of proportional reasoning and the ratio concept. Part II— Problem-structure at successive stages—Problem-solving strategies and the mechanism of adaptive restructuring. Educational Studies in Mathematics, 11(3), 331-363. https://doi.org/10.1007/BF00697744
Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2019). Relationships among prospective secondary mathematic teachers’ skills of attending, interpreting and responding to students’ understanding. Educational Studies in Mathematics, 100(1), 83-99. https://doi.org/10.1007/s10649-018-9855-y
Scheiner, T. (2021). Towards a more comprehensive model of teacher noticing. ZDM-Mathematics Education, 53(1), 85-94. https://doi.org/10.1007/s11858-020-01202-5
Scheiner, T. (2023). Shifting the ways prospective teachers frame and notice student mathematical thinking: from deficits to strengths. Educational Studies in Mathematics, 114(1), 35-61. https://doi.org/10.1007/s10649-023-10235-y
Tjoe, H. & De la Torre, J. (2014). On recognizing proportionality: Does the ability to solve missing value proportional problems presuppose the conception of proportional reasoning? Journal of Mathematical Behavior, 33, 1-7. https://doi.org/10.1016/j.jmathb.2013.09.002
Tyminsky, A. M., Simpson, A. J., Land, T. J., Drake, C., & Dede, E. (2021). Prospective elementary mathematics teachers’ noticing of children’s mathematics: A focus on extending moves. Journal of Mathematics Teacher Education, 24(6), 533-561. https://doi.org/10.1007/s10857-020-09472-2
Valverde, G. & Castro, E. (2012). Prospective elementary school teachers’ proportional reasoning. PNA, 7, 1-19. https://doi.org/10.30827/pna.v7i1.6134
Van Dooren, W., De Bock, D., Evers, M., & Verschaffel, L. (2009). Students’ overuse of proportionality on missing-value problems: How numbers may change solutions. Journal for Research in Mathematics Education, 40(2), 187-211. https://doi.org/10.2307/40539331
Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities of overgeneralization. Cognition and Instruction, 23(1), 57-86. https://doi.org/10.1207/s1532690xci2301_3
Weyers, J., König, J., Scheiner, T., Santagata, R., & Kaiser, G. (2024). Teacher noticing in mathematics education: A review of recent developments. ZDM Mathematics Education, 56(2), 249-264. https://doi.org/10.1007/s11858-023-01527-x
Publicades
Com citar
Descàrregues
Funding data
-
Agencia Estatal de Investigación
Grant numbers PID2023-149624NB-I00
Drets d'autor (c) 2025 jonathan Espinoza González, Àngela Buforn, Salvador Llinares

Aquesta obra està sota una llicència internacional Creative Commons Reconeixement 4.0.