Análisis del determinismo en una tarea de genética sobre una enfermedad animal

Autores/as

Resumen

Este artículo presenta un estudio de caso de corte cualitativo con alumnado de secundaria en el desempeño de una tarea de uso de datos y evaluación de un modelo determinista de expresión de los genes para explicar una enfermedad animal. Las preguntas de investigación son: 1) ¿cómo son las posiciones del alumnado en el discurso escrito a la hora de aplicar y evaluar un modelo de expresión de los genes para explicar una enfermedad animal? y 2) ¿cuál es la capacidad crítica mostrada en el discurso oral del alumnado para evaluar un modelo determinista en este contexto? Los resultados muestran dificultades para evaluar críticamente un modelo determinista y cambios en las posiciones del alumnado respecto al determinismo a lo largo de la tarea. El desarrollo de explicaciones deterministas se relaciona con la capacidad crítica en este estudio, lo que plantea futuras líneas de investigación.

Palabras clave

Aprendizaje de genética, Determinismo, Argumentación, Pensamiento crítico

Citas

Ageitos, N., Puig, B. y Calvo-Peña, X. (2017). Trabajar genética y enfermedades en secundaria integrando la modelización y la argumentación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(1), 86-97. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i1.07

Aivelo T. y Uitto, A. (2015). Genetic determinism in the Finnish upper secondary school biology textbooks. Nordic Studies in Science Education, 11(2), 139-152. https://doi.org/10.5617/nordina.2042.

Ayuso, G. E. y Banet, E. (2002). Alternativas a la enseñanza de la genética en educación secundaria. Enseñanza de las Ciencias, 20(1), 133-157.

Berland, L. K. y Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420

Caballero Armenta, M. (2008). Algunas ideas del alumnado de secundaria sobre conceptos básicos de genética. Enseñanza de las Ciencias, 26(2), 227-244.

Carver, R. B., Castéra J., Gericke, N., Evangelista, N. A. y El-Hani, C. N. (2017). Young Adults’ belief in genetic determinism, and knowledge and attitudes towards modern genetics and genomics: the PUGGS questionnaire. PLoS One, 12(1). https://doi.org/10.1371/journal.pone.0169808

Castéra, J., Bruguiere, C. y Clément, P. (2008). Genetic diseases and genetic determinism models in French secondary school biology textbooks. Journal of Biological Education, 42(2), 53-59. https://doi.org/10.1080/00219266.2008.9656111

Castéra, J. y Clément, P. (2014). Teachers’ conceptions about genetic determinism of human behaviour: a survey in 23 countries. Science Education, 23, 417-443. https://doi.org/10.1007/s11191-012-9494-0

Castéra, J., Clément, P. y Abrougui, M. (2008). Genetic determinism in school textbooks: A comparative study among sixteen countries. Science Education International, 19(2), 163-184.

Chapman, R., Likhanov, M., Selita, F., Zakharov, I., Smith-Woolley, E. y Kovas, Y. (2019). New literacy challenge for the twenty-first century: genetic knowledge is poor even among well illustrated. Journal of Community Genetics, 10, 73-84. https://doi.org/10.1007/s12687-018-0363-7

Donovan, J. y Venville, G. (2014). Blood and Bones: The Influence of the Mass Media on Australian Primary School Children’s Understandings of Genes and DNA. Science & Education, 23, 325-360. https://doi.org/10.1007/s11191-012-9491-3

Dougherty M. J. (2009). Closing the Gap: Inverting the Genetics Curriculum to Ensure an Informed Public. The American Journal of Human Genetics, 85(1), 6-12. https://doi.org/10.1016/j.ajhg.2009.05.010

Duncan, R. G., Choi, J., Castro-Faix, M. y Vaver, V. L. (2017). A Study of Two Instructional Sequences Informed by Alternative Learning Progressions in Genetics. Science & Education, 26, 1115-1141. https://doi.org/10.1007/s11191-017-9932-0

Duncan, R. G. y Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938-959. https://doi.org/10.1002/tea.20186

Duncan, R. G., Rogat, A. D. y Yarden, A. (2009). A Learning Progression for Deepening Students’ Understandings of Modern Genetics Across the 5th-10th Grades. Journal of Research in Science Teaching, 46(6), 655-674. https://doi.org/10.1002/tea.20312

Feinstein, N. W., Allen, S. y Jenkins, E. (2013). Outside the pipeline: reimagining science education for nonscientists. Science, 340, 314-317. https://doi.org/10.1126/science.1230855

Ford, M. (2008). ‘Grasp of Practice’ as a Reasoning Resource for Inquiry and Nature of Science Understanding. Science & Education, 17, 147-177. https://doi.org/10.1007/s11191-006-9045-7

Ford, M. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207-245. https://doi.org/10.1080/07370008.2012.689383

Freidenreich, H. B., Duncan, R. G. y Shea, N. A. (2011). Exploring middle school students’ understanding of three conceptual models in genetics. International Journal of Science Education, 33(17), 2323-2350. https://doi.org/10.1080/09500693.2010.536997

Gee, J. P. (2011). An introduction to discourse analyses. Theory and method. UK: Routledge.

Gericke N., Hagberg M., dos Santos V., Joaquim L. y El-Hani C. (2014). Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries. Science & Education, 23(2), 381-416. https://doi.org/10.1007/s11191-012-9499-8

Gericke, N. y Wahlberg, S. (2013) Clusters of concepts in molecular genetics: a study of Swedish upper secondary science students understanding, Journal of Biological Education, 47(2), 73-83. https://doi.org/10.1080/00219266.2012.716785

Gilbert, J. K., Osborne, R. J. y Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66, 623-633. https://doi.org/10.1002/sce.3730660412

González-Howard, M. y McNeill, K. L. (2017). Variation in how teachers support critique in argumentation discussions. Paper presented at the annual meeting of the National Association for Research in Science Teaching, San Antonio, TX.

Harding, B., Egan, R., Kannu, P. y MacKenzie, J. (2017). Parents’ understanding of genetics and heritability. Journal of Genetic Counseling, 26, 541-547. https://doi.org/10.1007/s10897-016-0021-3

Henderson, J. B., MacPherson, A., Osborne, J. y Wild, A. (2015). Beyond construction: Five arguments for the role and value of critique in learning science. International Journal of Science Education, 37(10), 1668-1697. https://doi.org/10.1080/09500693.2015.1043598

Jamieson, A. y Radick, G. (2017). Genetic Determinism in the Genetics Curriculum. An Exploratory Study of the Effects of Mendelian and Weldonian Emphases. Science & Education, 26, 1261-1290. https://doi.org/10.1007/s11191-017-9900-8

Jiménez-Aleixandre, M. P. (2010). 10 ideas clave: Competencias en argumentación y uso de pruebas. Barcelona: Graó.

Jiménez-Aleixandre, M. P. (2014). Determinism and Underdetermination in Genetics: Implications for Students’ Engagement in Argumentation and Epistemic Practices. Science & Education, 23(2), 465-484. https://doi.org/10.1080/09500693.2015.1043598

Jiménez Aleixandre, M. P., Bravo Torija, B. y Puig, B. (2009). ¿Cómo aprende el alumnado a usar y evaluar pruebas? Aula de Innovación Educativa, 186, 10-12.

Jiménez-Aleixandre, M. P., Bugallo, A. y Duschl, R. (2000). «Doing the Lesson» or «doing science» argument in high school genetics. Science Education, 84, 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F

Kampourakis, K. (2017). Making Sense of Genes. Cambridge: Cambridge University Press.

Keller, E. F. (2009). Century of the Gene. Cambridge, MA: Harvard University Press.

Kendler, K. S. (2005). A Gene for.: The Nature of Gene Action in Psychiatric Disorders. American Journal of Psychiatry, 162(7), 1243-1252. https://doi.org/10.1176/appi.ajp.162.7.1243

Knippels, M. C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education: The yo-yo learning and teaching strategy. Utrecht: CD-b Press.

Lehrer R. y Schauble L. (2012). Seeding Evolutionary Thinking by engaging children in modeling its foundations. Science Education, 96, 701-704. https://doi.org/10.1002/sce.20475

Lewis, J., Leach, J. y Wood-Robinson, C. (2000). Chromosomes: The missing link-young people’s understanding of mitosis, meiosis and fertilization. Journal of Biological Education, 34(4), 189-199. https://doi.org/10.1080/00219266.2000.9655717

Lewontin, R. (2000). The Triple Helix: Gene, Organism, Environment. Cambridge, MA: Harvard University Press.

Marbach-Ad G (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biology Education, 35(4), 183-189. https://doi.org/10.1080/00219266.2001.9655775

Marbach-Ad G. y Stavy R. (2000). Students cellular and molecular explanations of genetic phenomena. Journal of Biology Education, 34(4), 200-205. https://doi.org/10.1080/00219266.2000.9655718

Martínez-Gracia, M. V., Gil-Quílez, M. J. y Osada, J. (2006). Analysis of molecular genetics content in Spanish secondary school textbooks, Journal of Biological Education, 40(2), 53-60. https://doi.org/10.1080/00219266.2006.9656014

Puig, B., Ageitos, N. y Jiménez Aleixandre, M. P. (2017). Learning gene expression through modelling and argumentation. A study exploring the connections between the worlds of knowledge. Science & Education, 119-122. https://doi.org/10.1007/s11191-017-9943-x

Puig, B. y Jiménez-Aleixandre, M. P. (2011). Different music to the same score: teaching about genes, environment, and human performances. En T. D. Sadler (Ed.), Socioscientific Issues in the Classroom. Teaching, Learning and Research (pp. 201-238). Nueva York: Springer.

Puig, B. y Jiménez Aleixandre, M. P. (2015). El modelo de expresión de los genes y el determinismo en los libros de texto de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), 55-65. http://dx.doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2015.v12.i1.05http://reuredc.uca.es

Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Boletín Oficial del Estado, 3 de enero de 2015, 3, 169-546.

Reinagel, A. y Bray Speth, E. (2016). Beyond the central dogma: model-based learning of how genes determine phenotypes. CBE Life Science Education, 15(1). https://doi.org/10.1187/cbe.15-04-0105

Sadler, T. D. y Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90, 986-1004. https://doi.org/10.1002/sce.20165

Sanmartí, N., Burgos, B. y Nuño, T. (2011). ¿Por qué el alumnado tiene dificultad para utilizar sus conocimientos científicos escolares en situaciones cotidianas? Alambique: Didáctica de las Ciencias Experimentales, 67, 62-69.

Shostak, S., Freese, J., Link, B. G. y Phelan, J. C. (2009). The politics of the gene: social status and beliefs about genetics for individual outcomes. Social Psychology Quarterly, 72(1), 77-93. https://doi.org/10.1177/019027250907200107

Todd, A. y Kenyon, L. (2016). Empirical refinements of a molecular genetics learning progression: the molecular constructs. Journal of Research in Science Teaching, 53(9), 1385-1418. https://doi.org/10.1002/tea.21262

Zohar, A. y Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in genetics. Journal of Research in Science Teaching, 39, 35-62. https://doi.org/10.1002/tea.10008

Publicado

2021-08-02

Descargas

Los datos de descargas todavía no están disponibles.