Deficiencias de comprensión y epistémicas de los estudiantes universitarios en la construcción de categorías explicativas sobre las relaciones trabajo-energía

Autores/as

Resumen

La comprensión del principio generalizado de trabajo y energía es crucial para aplicar las relaciones de trabajo y energía en cursos de física general y en la toma de decisiones de la ciudadanía en problemas relacionados con consumo y transferencia de energía y máquinas. Se ha diseñado un cuestionario de preguntas abiertas para detectar dificultades de aprendizaje de los estudiantes en los conceptos implicados. El análisis de las respuestas se ha realizado mediante la metodología fenomenográfica, que se centra en establecer categorías interpretativas a nivel colectivo. Los resultados obtenidos muestran que los estudiantes no comprenden el concepto de trabajo y de energía y no reconocen la necesidad de modelización del análisis mediante un sistema. Algunos errores son más frecuentes en situaciones que involucran fuerzas de rozamiento. Las dificultades se manifiestan tanto a nivel conceptual como epistemológico.

Palabras clave

Relaciones energía y trabajo, Mecánica newtoniana, Dificultades de aprendizaje, Cursos de física general en universidad

Citas

Arons, A. B. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67(12), 1063-1067. https://doi.org/10.1119/1.19182

Bächtold, M. y Guedj, M. (2014). Teaching Energy Informed by the History and Epistemology of the Concept with Implications for Teacher Education. En M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 211-243). Dordrecht / Bruselas: Springer. https://doi.org/10.1007/978-94-007-7654-8_8

Bauman, R. H. (1992). Physics that textbook writers usually get wrong: II. Heat and energy. Physics Teacher, 30, 353-356. https://doi.org/10.1119/1.2343574

Besson, U. (2001). Work and Energy in the Presence of Friction: The Need for a Mesoscopic Analysis. European Journal of Physics, 22, 613-622. https://doi.org/10.1088/0143-0807/22/6/306

Besson, U., Borghi, L., De Ambrosis, A. y Mascheretti, P. (2007). How to teach friction: Experiments and models. American Journal of Physics, 75(12), 1106-1113. https://doi.org/10.1119/1.2779881

Beynon, J. (1990). Some myths surrounding energy. Physics Education, 25(6), 314-316. https://doi.org/10.1088/0031-9120/25/6/305

Boohan, R. y Ogborn, J. (1996). Energy and change: Introducing a new approach. Londres: Institute of Education, University of London. https://scholar.google.es

Bowden, J., Dall’Alba, G., Martin, E., Laurillard, D., Marton, F., Master, G. y Walsh, E. (1992). Displacement, velocity, and frames of reference: Phenomenographic studies of students’ understanding and some implications for teaching and assessment. American Journal of Physics, 60, 262. https://doi.org/10.1119/1.16907

Chabay, R., Sherwood, B. y Titus, A. (2019). A unified, contemporary approach to teaching energy in introductory physics. American Journal of Physics, 87(7), 504-509. https://doi.org/10.1119/1.5109519

Chrisholm, D. (1992). Some energetic thoughts. Physics Education, 27, 215-220. https://doi.org/10.1088/0031-9120/27/4/009

Cortazzi, M. (1993). Narrative Analysis. Brighton: Falmer Press. https://doi.org/10.4324/9781315067421

Dawson-Tunik, T. L. y Stein, Z. (2008). It has bounciness inside! En Developing conceptions of energy. https://scholar.google.es

Ding, L., Chabay, R. y Sherwood, B. (2013). How do students in an innovative principle based on mechanics course understand energy concepts? Journal of Research in Science Teaching, 50(6), 722-747. https://doi.org/10.1002/tea.21097

Doménech, J. L., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J, Salinas, J., Trumper, R., Valdés, P. y Vilches, A. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16(1), 43-64. https://doi.org/10.1007/s11191-005-5036-3

Doménech, J. L., Limiñana, R. y Menargues Marcilla, M. A. (2013). La superficialidad en la enseñanza del concepto de energía: una causa del limitado aprendizaje alcanzado por los estudiantes de bachillerato. Enseñanza de las Ciencias, 31(3), 103-119. https://scholar.google.es

Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, 481-490. https://scholar.google.es

Driver, R. y Warrington, L. (1985). Students’ use of the principle of energy conservation in problem situations. Physics Education, 20(4), 171-176. https://doi.org/10.1088/0031-9120/20/4/308

Duit, R. (1981). Understanding Energy as Conserved Quantity-Remarks on the Article by R. U. Sexl. European Journal of Science Education, 3(3), 291-301. https://doi.org/10.1080/0140528810030306

Duit, R. (1986). In search of an energy concept. En R. Driver y R. Millar (Eds.), Energy matters (pp. 67-101). Leeds: University of Leeds. https://scholar.google.es

Duit, R., Treagust, D. y Mansfield, H. (1996). Investigating students understanding as prerequisite to improve teaching and learning in science and mathematics. En D. Treagust, R. Duit y B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 17-31). Nueva York: Teachers Press College. https://scholar.google.es

Ebenezer, J. y Fraser, D. (2001). First year chemical engineering students’ conceptions of energy in solution processes: Phenomenographic categories for common knowledge construction. Science Education, 85, 509. https://doi.org/10.1002/sce.1021

Engel Clough, E. y Driver, R. (1986). A study of consistency in the use of students’ conceptual framework across different task contexts. Science Education, 70(4), 473-496. https://doi.org/10.1002/sce.3730700412

Erlichson, H. (1977). Work and kinetic energy for an automobile coming to a stop. American Journal of Physics, 45(8), 769-769. https://doi.org/10.1119/1.10770

Fishbane, P. M., Gasiorowicz, S. y Thornton, S. T. (1994). Física: para ciencias e ingeniería. Hispanoamericana: Prentice Hall.

Gailiunas, P. (1988). Is energy a thing? Some misleading aspects of scientific language. School Science Review, 69, 587-590. https://scholar.google.es

Guisasola, J., Almudi, J. M. y Zuza, K. (2013). University students’ understanding of electromagnetic induction. International Journal of Science Education, 35(16), 2692-2717. https://doi.org/10.1080/09500693.2011.624134

Gutiérrez-Berraondo, J., Zuza, K., Zavala, G. y Guisasola, J. (2018). Ideas de los estudiantes universitarios sobre las relaciones trabajo y energía en Mecánica en cursos introductorios de Física. Caderno Brasileiro de Ensino de Física, 40(1). https://doi.org/10.1590/1806-9126-rbef-2017-0131

Hicks, N. (1983). Energy is the capacity to do work - or is it? Physics Teacher, 21, 529-530. https://doi.org/10.1119/1.2341393

Jewett, J. W. (2008a). Energy and the Confused Student II: Systems. The Physics Teacher, 46(4), 81-86. https://doi.org/10.1119/1.2834527

Jewett, J. W. (2008b). Energy and the Confused Student III: Language. The Physics Teacher, 46(4), 149-153. https://doi.org/10.1119/1.2840978.

Jewett, J. W. (2008c). Energy and the Confused Student IV: A Global Approach to Energy. The Physics Teacher, 46(4), 210-217. https://doi.org/10.1119/1.2895670

Jewett, J. W. (2008d). Energy and the Confused Students I: Work. The Physics Teacher, 46(4), 38-43. https://doi.org/10.1119/1.2823999

Larkin, J. H. y Rainard, B. (1984). A research methodology for studying how people think. Journal of Research in Science Teaching, 21(3), 235-254. https://doi.org/10.1002/tea.3660210302

Leach, J. y Scott, P. H. (2008). Teaching for the conceptual understanding: An approach drawing on individual and sociocultural perspective. En S. Vosniadou (Ed.), International handbook of research on conceptual change. (pp. 647-675). Nueva York / Londres: Routledge. https://scholar.google.es

Lindsey, B. A., Heron, P. R. y Shaffer, P. S. (2009). Student ability to apply the concepts of work and energy to extend systems. American Journal of Physics, 77(11), 999-1009. https://doi.org/10.1119/1.3183889

Lindsey, B. A., Heron, P. R. y Shaffer, P. S. (2012). Student understanding of energy: Difficulties related to systems. American Journal of Physics, 80(2), 154-163. https://doi.org/10.1119/1.3660661

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67, 255-276. https://doi.org/10.1007/s10649-007-9104-2

Mallinckrodt, A. J. y Leff, H. S. (1992). All about work. American Journal of Physics, 60(4), 356-365. https://doi.org/10.1119/1.16878

Marton, F. (1981). Phenomenography-Describing conceptions of the world around us. Instructional Science, 10, 177-200. https://doi.org/10.1007/bf00132516

Marton, F. y Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates Publishers. https://scholar.google.es

Mestre, J. P., Thaden-Koch, T. C., Dufresne, J. y Grace, W. J. (2004). The dependence of knowledge deployment on context among Physics novices. En Research on Physics Education, Proceedings of the international School of Physics «Enrico Fermi». Ámsterdam: IOS Press. https://scholar.google.es

Mungan, C. E. (2005). A classic chase problem solved from a physics perspective. European Journal of Physics, 26(6), 985. https://doi.org/10.1088/0143-0807/26/6/005

Ogborn, J., Kress, G. y Martins, I. (1996). Explaining science in the classroom. Mcgraw-Hill Education. https://scholar.google.es

Papadouris, N., Constantinou, C. P. y Kyratsi, T. (2008). Students’ use of the energy model to account for changes in physical systems. Journal of Research in Science Teaching, 45(4), 444-469. https://doi.org/10.1002/tea.20235

Penchina, C. M. (1978). Pseudowork-energy principle. American Journal of Physics, 46(3), 295-296. https://doi.org/10.1119/1.11359

Prain, V. y Hand, B. (1999). Students perceptions of writing for learning in secondary school science. Science Education, 83(2), 151-162. https://doi.org/10.1002/(sici)1098-237x(199903)83:2<151::aid-sce4>3.0.co;2-s

Rivard, L. P. (1994). A review of writing to learn in science: Implications for practice and research. Journal of Research in Science Teaching, 31, 969-983. https://doi.org/10.1002/tea.3660310910

Romer, R. H. (2001). Heat is not noun. American Journal of Physics, 69, 107-109. https://doi.org/10.1119/1.1341254

Scott, P., Asoko, H. y Leach, J. (2008). Student conceptions and conceptual learning science. En A. K. Abell y N. G. Lederman (Eds.), Handbook of research on science education. Nueva York: Routledge. https://scholar.google.es

Sexl, R. U. (1981). Some observations concerning the teaching of the energy concept. European Journal of Science Education, 3, 285-289. https://doi.org/10.1080/0140528810030305

Sherwood, B. A. (1983). Pseudowork and real work. Journal of Physics, 51(7), 597-602. https://doi.org/10.1119/1.13173

Sherwood, B. A. y Bernard, W. H. (1984). Work and heat transfer in the presence of sliding friction. American Journal of Physics, 52(11), 1001-1007. https://doi.org/10.1119/1.13775

Taber, K. S. (2006). Constructivism’s new clothes: The trivial, the contingent and a progressive research programme into learning of science. Foundations of Chemistry, 8, 189-219. https://doi.org/10.1007/s10698-005-4536-1

Tahirsylaj, A., Niebert, K. y Duschl, R. (2016). Curriculum and didaktik in 21st century: Still divergent or converging? European Journal of Curriculum Studies, 2(2), 262-281. https://scholar.google.es

Tarsitani, C. y Vicentini, M. (1991). Calore, energía, entropía. Milán: Ed. Franco Angeli.

Tipler, P. A. y Mosca, G. (2005). Física para la ciencia y la tecnología. Reverte. https://scholar.google.es

Trumper, R. (1990). Being constructive: an alternative approach to the teaching of the energy concept part one. International Journal of Science Education, 12, 343-354. https://doi.org/10.1080/0950069900120402

Trumper, R. (1993). Children’s energy concepts: a cross-age study. International Journal of Science Education, 15, 139-148. https://doi.org/10.1080/0950069930150203

Viennot, L. (2001). Reasoning in Physics: The part of common sense. Springer Science / Business media. https://doi.org/10.5860/choice.39-4641

Vosniadou, S. (2012). Reframing the Classical Approach to Conceptual Change Preconceptions, Misconceptions and Synthetic Models. En B. J. Fraser, K. G. Tobin y C. J. McRobbie (Eds.), Second International Handbook of Science Education vol. I. Londres: Springer. https://doi.org/10.1007/978-1-4020-9041-7_10

Vygotsky, L. S. (1978). Interaction between learning and development. En M. Gauyain y M. Cole (Eds.), Readings on the development of children. Nueva York: W. H. Freeman and Company. https://doi.org/10.2307/j.ctvjf9vz4.11

Wandersee, J. H., Mintzes, J. J. y Novak, J. D. (1994). Research on alternative conceptions in Science. En D. L. Gabel (Ed.), Handbook of Research on Science teaching and Learning. Nueva York: McMillan Publications. https://scholar.google.es

Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295-297. https://scholar.google.es

Watts, M., Gould, G. y Alsop, S. (1997). Questions of understanding: Categorising pupils’ questions in Science. School Science Review, 79, 57. https://doi.org/10.1080/0950069970190903

Zuza, K., Van Kampen, P., De Cock, M., Kelly, T. y Guisasola, J. (2018). Introductory university physics students’ of some key characteristics of classical theory of the electromagnetic field. Physical Review Physics Education Research, 14(2), 020117. https://doi.org/10.1103/physrevphyseducres.14.020117

Young, H. D. y Feedman, R. A. (2009). Sears-Zemansky Física Universitaria. México DF: Addison-Wesley. https://scholar.google.es

Publicado

2022-03-03

Descargas

Los datos de descargas todavía no están disponibles.