A Hypothetical Learning Trajectory on the Logical Inference Called Denial of Antecedent
Abstract
This paper presents the findings on how the design and implementation of a hypothetical learning trajectory (HLT) can promote a conceptual change about an invalid mode of inference frequently used by university students, the denial of antecedent inference. The HLT is situated within the study of the topic of infinite series, and it is designed following the model of logical inferences, cognitive conflict and conceptual change, among other relevant theorical elements. The HLT implementation is based on the framework of classroom interventions addressing key and persistent problems. The orchestration of these theoretical elements under a design-based methodological framework shows advances in the deductive reasoning of the students examined.
Keywords
Hypothetical learning trajectory, Classroom-based interventions, Conceptual change, Denial of the antecedent inference, Design-based researchReferences
Bajo-Benito, J. M., Sánchez-Matamoros García, G. y Gavilán-Izquierdo, J. M. (2021). The use of logical implication as an indicator of understanding the concept of number sequences. Eurasia Journal of Mathematics, Science and Technology Education, 17(12), em2058. https://doi.org/10.29333/ejmste/11429
Bakker, A. y Van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. En A. Bikner, C. Knipping y N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education (pp. 429–466). Springer. https://doi.org/10.1007/978-94-017-9181-6_16
Brousseau, G. (1994). Los diferentes roles del maestro. En C. Parra e I. Saiz (Comps.), Didáctica de matemáticas aportes y reflexiones (pp. 65-94). Paidós Educador.
Camacho, V., Sánchez Pozos, J. J. y Zubieta, G. (2014). Los estudiantes de ciencias, ¿pueden reconocer los argumentos lógicos involucrados en una demostración? Enseñanza de las Ciencias, 32(1), 117-138. https://doi.org/10.5565/rev/ensciencias.983
Cárcamo, A., Fortuny, J. M. y Fuentealba, C. (2021). Las trayectorias hipotéticas de aprendizaje: un ejemplo en un curso de álgebra lineal. Enseñanza de las Ciencias, 39(1), 45-63. https://doi.org/10.5565/rev/ensciencias.2857
Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53(1), 5-34. https://doi.org/10.1023/A:1024661004375
Duval, R. (2004). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales (2.a ed., trad. de R. M. Vega [1995]). Programa Editorial Universidad del Valle.
Epp, S. (2003). The role of logic in teaching proof. American Mathematical Monthly, 110, 886-899. https://doi.org/10.1080/00029890.2003.11920029
Evans, J. S. B. T., Handley, S. J., Neilens, H. y Over, D. E. (2007). Thinking about conditionals: a study of individual differences. Memory & Cognition, 35(7), 1772-1784. https://doi.org/10.3758/BF03193509
Gravemeijer, K. (2016). Design-research-based curriculum innovation. Quadrante, 25(2), 7-23. https://doi.org/10.48489/quadrante.22935
Herrera, J. G. y Rodríguez, A. (2022). Inferencias Lógicas en el Contexto del Cálculo. [Microsoft Forms]. https://forms.office.com/r/bP2qLmzzz5
Inglis, M. y Simpson, A. (2008). Conditional inference and advanced mathematical study. Educational Studies in Mathematics, 67, 187-204. https://doi.org/10.1007/s10649-007-9098-9
Ivars, P., Fernández, C. y Linares, S. (2020). Uso de una trayectoria hipotética de aprendizaje para proponer actividades de instrucción. Enseñanza de las Ciencias, 38(3), 105-124. https://doi.org/10.5565/rev/ensciencias.2947
Leikin, R. y Dinur, S. (2003). Patterns of flexibility: teachers’ behavior in mathematical discussion. En M. A. Mariotti (Ed.), Electronic Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education.
Noya, S. I. y Adúriz-Bravo, A. (2023). Dificultades con los modos inferenciales falaces en estudiantes de matemática y física. Revista de Educación Matemática, 38(3), 28-58. https://doi.org/10.33044/revem.43986
Simon, M. A. y Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: an elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91-104. https://doi.org/10.1207/s15327833mtl0602_2
Stylianides, A. J., Stylianides, G. J. y Philippou, G. N. (2004). Undergraduate students’ understanding of the contraposition equivalence rule in symbolic and verbal contexts. Educational Studies in Mathematics, 55, 133-162. http://doi.org/10.1023/B:EDUC.0000017671.47700.0b
Stylianides, G. J. y Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to proof. Journal for Research in Mathematics Education, 40(3), 314-352. https://doi.org/10.5951/jresematheduc.40.3.0314
Stylianides, A. J. y Stylianides, G. J. (2018). Addressing key and persistent problems of students’ learning: the case of proof. En A. Stylianides y G. Harel (Eds.), Advances in Mathematics Education Research on Proof and Proving (pp. 99-113). Springer. https://doi.org/10.1007/978-3-319-70996-3_7
Vosniadou, S. y Verschaffel, L. (2004). Extending the conceptual change approach to mathematics learning and teaching. Learning and Instruction, 14(5), 445-451. http://doi.org/10.1016/j.learninstruc.2004.06.014
Watson, A. y Mason, J. (2005). Mathematics as a constructive activity: learners generating examples. Routledge. https://doi.org/10.4324/9781410613714
Zazkis, R. y Chernoff, E. J. (2008). What makes a counterexample exemplary?. Educational Studies in Mathematics, 68(3), 195-208. http://doi.org/10.1007/s10649-007-9110-4
Published
Downloads
Copyright (c) 2025 Gabriel Herrera-Alva, Arturo

This work is licensed under a Creative Commons Attribution 4.0 International License.