Knowledge Application and Epistemic Performances In a Design-Project About Buoyancy

Authors

Abstract

This paper analyses pre-service primary teachers’ performances in engineering design by applying their knowledge about buoyancy. Moreover, the epistemic engineering practices carried out during the implementation of the project are also examined. The participants are 68 pre-service teachers from the 2nd year of the Primary Education degree working in 19 small groups of 3-4 members. The intervention was carried in a 90-minute session and the challenge was to design a prototype that would allow the students in the next-door class to understand why a boat floats in water, but a 5-cent coin does not. For data analysis we used the strategy of qualitative content knowledge. The main results point to difficulties in applying the necessary scientific knowledge in the development of the prototype, as well as a heterogeneous use of epistemic engineering practices.

Keywords

Engineering design, Buoyancy, Pre-service teachers, Qualitative research, Epistemic practices

References

Andersson, K. y Gullberg, A. (2014). What is science in preschool and what do teachers have to know to empower children? Cultural Studies of Science Education, 9(2), 275-296. https://doi.org/10.1007/s11422-012-9439-6

Antik-Meyer, A. y Arias, A. M. (2022). Teachers’ Incorporation of Epistemic Practices in K‐8 Engineering and Their Views About the Nature of Engineering Knowledge. Science and Education, 31, 357-382. https://doi.org/10.1007/s11191-021-00265-4

Arifin, N. R. y Mahmud, S. N. D. (2021). A systematic literature review of design thinking Application in STEM integration, Creative Education, 12, 1558-1571. https://doi.org/10.4236/ce.2021.127118

Blanco, A. (2010). «¿Flota o se hunde? Una secuencia de enseñanza para trabajar la competencia en el conocimiento e interacción con el mundo físico», en A. de Pro (ed.), Competencias en el conocimiento e interacción con el mundo físico: la comprensión del entorno próximo, Ministerio de Educación, pp. 137-162.

Butts, D. P., Hofman, H. y Anderson, M. (1993). Is hands-on experience enough? A study of young children’s view of sinking and floating objects. Journal of Elementary Science Education, 5(1), 50-64. https://doi.org/10.1007/BF03170644

Bybee, R. W. (2011). Scientific and Engineering Practices in K–12 Classrooms Understanding A Framework for K–12 Science Education. Science Scope, 35(4), 6-11.

Casas-Quiroga, L. y Crujeiras-Pérez, B. (2020). Epistemic operations performed by high school students in an argumentation and decision-making context: Setrocia’s alimentary emergency. International Journal of Science Education, 42(16), 2653-2673. https://doi.org/10.1080/09500693.2020.1824300

Chiabrando, L. y Dibar, M. C. (2014). ¿Qué estrategias utilizan los niños de escolaridad primaria para evaluar explicaciones sobre fenómenos físicos? Revista de Enseñanza de la Física, 26, 65-74. https://revistas.unc.edu.ar/index.php/revistaEF/article/view/9734

Christodoulou, A. y Osborne, J. (2012). A comparison of epistemic features of student and teacher talk during argument-based instruction. Comunicación presentada en la 12 International Conference of NARST. http://eprints.soton.ac.uk/id/eprint/451857

Cunningham, C. M. y Carlsen, W. S. (2014). Teaching Engineering Practices. Journal of Science Teacher Education, 25, 197-210. https://doi.org/10.1007/s10972-014-9380-5

Cunningham, C. M. y Kelly, G. J. (2017). Epistemic Practices of Engineering for Education, Science Education, 101, 486-505. https://doi.org/10.1002/sce.21271

Dorland, A. (2021). That’s a Good Question: Using Design Thinking to Foster Question Formulation Skill Development. Journal of Effective Teaching in Higher Education, 5(1), 30-52. https://doi.org/10.36021/jethe.v5i1.115

Driver, R., Guesne, E. y Tiberghien, A. (1999). Ideas científicas en la infancia y la adolescencia (4.ª ed.). Morata.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3). https://doi.org/10.1186/s40594-016-0036-1.

English, L. D. (2020). Facilitating STEM integration through design. En J. Anderson y Y. Li (Eds.), Integrated approaches to STEM education: an international perspective (pp. 45-66). Springer.

Fernández Monteira, S., Álvarez Pérez, V. M., Crujeiras Pérez, B. y Jiménez-Aleixandre, M. P. (2014). Explicación de fenómenos científicos en la formación inicial del profesorado: la flotabilidad de los cuerpos. En M. A. De las Heras Pérez et al. (Coords.) 26 Encuentros de Didáctica de las Ciencias Experimentales, (pp. 837-843 ).

García Cabrero, B. y Jiménez Vidal, S. (1996). Redes semánticas de los conceptos de presión y flotación en estudiantes de bachillerato. Revista Mexicana de Investigación Educativa, 1(2), 343-361. http://www.redalyc.org/articulo.oa?id=14000205

Gaston, J. P., Guffey-McCorrison, S. K. y Rand, A. D. (2023). Using video and written reflection to assess second-grade students’ design thinking and conceptual understanding in an engineering and design challenge. International Journal of Education in Mathematics, Science, and Technology (IJEMST), 11(4), 820-843. https://doi.org/10.46328/ijemst.2746

Greca I. M., Ortiz-Revilla J. y Arriassecq, I. (2021). Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1802. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802

Güler Nalbantoğlu, F., Çakıroğlu, J. y Yılmaz Tüzün, Ö. (2023). Engineering design-based activity for middle school students: Thermal insulation. Journal of Inquiry Based Activities, 13(1), 29-53. https://ated.info.tr/index.php/ated/article/view/167

Hanson, J. R., Hardman, S., Luke., S. y Lucas, B. (2021). Developing pre-service primary teachers’ understanding of engineering through engineering habits of mind and engagement with engineers. International Journal of Technology and Design Education, 32, 1469-1494. https://doi.org/10.1007/s10798-021-09662-w

Harriet, R. T, Rappolt-Schlichtmann, G. y Vogel Zanger, V. (2004). Children’s learning about water in a museum and in the classroom. Early Childhood Research Quarterly, 19(1) 40-58. https://doi.org/10.1016/j.ecresq.2004.01.008

Jiménez-Aleixandre, M. P., Mortimer, E. F., Silva, A. C. T. y Díaz, J. (2008). Epistemic practices: An analytical framework for science classrooms. Comunicación presentada en Annual meeting of the American Educational Research Association (AERA).

Kelly, G. J. (2008). Inquiry, activity and epistemic practice. En R. A. Duschl y R. E. Grandy (Eds.), Teaching Scientific Inquiry. Sense Publishers. https://doi.org/10.1163/9789460911453_009

Kelly, G. J. y Licona, P. (2018). Epistemic Practices and Science Education. En M. R. Matthews (Ed.), History, Philosophy and Science Teaching, Science: Philosophy, History and Education (pp. 139-165). Springer.

Khishfe, R. y Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578. https://doi.org/10.1002/tea.10036

Lederman, N. G., Lederman, J. S. y Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), 138-147. https://eric.ed.gov/?id=ED543992

Li, Y., Schoenfeld, A., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D. y Duschl, R. A. (2019). Design and Design Thinking in STEM Education. Journal for STEM Education Research, 2, 93-104. https://doi.org/10.1007/s41979-019-00020-z

Mazitelli, C., Maturano, C., Núñez, G. y Pereira, R. (2006). Identificación de dificultades conceptuales y procedimentales de alumnos y docentes de EGB sobre la flotación de los cuerpos. Revista Eureka sobre Enseñanza y Divulgación de las ciencias, 3(1), 33-50. http://hdl.handle.net/10498/16223

Mazzitelli, C., Maturano, C. I., Núñez, G. I., Pereira, R. y Macías, A. (2005). ¿Aportan los libros de texto soluciones a las dificultades de los alumnos sobre la flotación de los cuerpos? Enseñanza de las Ciencias (extra).

Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and software solution. http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173.

Mumba, F., Rutt., A. y Chabalengula, V. M. (2023). Representation of Science and Engineering Practices and Design Skills in Engineering Design-Integrated Science Units Develope by Pre-service teachers. International Journal of Science and Mathematics Education, 21, 439-461. https://doi.org/10.1007/s10763-022-10266-6

National Research Council (2012). A framework for K-12 science education: practices, crosscutting concepts and core ideas. National Academy Press.

Newell, G. E. y Misar, K. S. (2022). Argumentative writing as an Epistemic Practice in Middle School Science, Journal of Literacy Research, 54(3), 272-297. https://doi.org/10.1177/1086296X221116860

Ozkizilcik, M. y Cebesoy, U. B. (2024). The influence of an engineering design-based STEM course on pre-service science teachers’ understanding of STEM disciplines and engineering design process, International Journal of Technology and Design Education, 34, 727-758. https://doi.org/10.1007/s10798-023-09837-7

Paños, E., Martínez Rodenas, P. y Reyes Ruiz-Gallardo, J. (2022). La flotabilidad a examen en las aulas de infantil. Evaluación del nivel de guía del docente, Enseñanza de las Ciencias, 40(1), 161-177 https://doi.org/10.5565/rev/ensciencias.3281

Pérez, S., y Meneses Villagrá, J. A. (2020). La enseñanza de las ciencias por indagación y el diseño ingenieril en educación primaria. Ápice. Revista de Educación Científica, 5(1), 1-19. https://doi.org/10.17979/arec.2021.5.1.5807

Pruneau, D., El Jai, B., Dionne, L., Louis, N. y Potvin, P. (2019). Design Thinking for a Sustainable Development: Applied Models for Schools, Universities and Communities. Universidad de Moncton.

Putra, P.D.A., Sulaeman, N. F., Supeno y Wahyuni, S. (2023). Exploring Students’ Critical Thinking Skills Using the Engineering Design Process in a Physics Classroom. The Asia-Pacific Education Researcher, 32, 141-149. https://doi.org/10.1007/s40299-021-00640-3

Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, 52, 2 de marzo de 2022, 24386-24504.

Schreirer, M. (2012). Qualitative content analysis in practice. SAGE publications.

Slisko, J. y García, A. M. (2010). Un frasco flota en el agua y se hunde en el aceite: ¿cómo los alumnos de bachillerato explican tales hechos y qué predicen para una situación más compleja? Latin-American Journal of Physics Education, 4(2), 22.

Vorholzer, A., von Aufschnaiter, C. y Boone, W. J. (2020). Fostering upper secondary students’ ability to engage in practices of scientific investigation: a comparative analysis of an explicit and an implicit instructional approach. Research in Science Education, 50, 333-359. https://doi.org/10.1007/s11165-018-9691-1

Published

2025-03-03

Downloads

Download data is not yet available.