Design and Viability of Resources for Teaching QSAR Modeling in Chemical Engineering

Authors

Abstract

The Modeling Quantitative Structure-Activity Relationship (QSAR) is relevant to chemical engineering but it is still not part of the training curricula. With the aim to integrate it, an investigation has been developed using elements of the anthropological theory of the didactic and didactic engineering. The didactic transposition on QSAR modeling has been performed. Two university curricula and the didactic routes on QSAR –didactic classification of knowledge by topic and level of complexity for its study– have been analyzed. Based on this, didactical devices were designed: Study and Research Paths (SRP-QSAR). Its viability of implementation in Chemical Engineering courses was evidenced, constituting an innovative didactic way to allow future engineers to build and interpret models.

Keywords

Chemical engineers training, Mathematical modelling, QSAR, Didactic device, Anthropological theory of the didactic

References

Amer, M. À., Luque-Corredera, C. y Bartolomé, E. (2022). Study and research path for learning general chemistry: analyzing the quality of drinking water. Journal of Chemical Education, 99(3), 1255-1265. https://doi.org/10.1021/acs.jchemed.1c00971

Artigue, M. (2015). Perspectives on design research: the case of didactical engineering. En A. Bikner-Ahsbahs, C. Knipping y N. Presmeg. (Eds.), Approaches to qualitative research in mathematics education (pp. 467-496). Springer. https://doi.org/10.1007/978-94-017-9181-6_17

Barquero, B. y Bosch, M. (2015). Didactic engineering as a research methodology: from fundamental situations to study and research paths. En A. Watson y M. Ohtani (Eds.), Task design in mathematics education, new ICMI study series (pp. 249-272). Springer. https://doi.org/10.1007/978-3-319-09629-2_8

Barquero, B., Bosch, M. y Gascón, J. (2011). Los recorridos de estudio e investigación y la modelización matemática en la enseñanza universitaria de las ciencias experimentales. Enseñanza de las Ciencias, 29(3), 339-352. https://doi.org/10.5565/rev/ec/v29n3.519

Barquero, B., Bosch, M. y Gascón, J. (2014). Incidencia del «aplicacionismo» en la integración de la modelización matemática en la enseñanza universitaria de las ciencias experimentales. Enseñanza de las Ciencias, 32(1), 83-100. https://doi.org/10.5565/rev/ensciencias.933

Barquero, B., Bosch, M. y Gascón, J. (2019). The unit of analysis in the formulation of research problems: The case of mathematical modelling at university level. Research in Mathematics Education, 21(3), 314-330. https://doi.org/10.1080/14794802.2019.1624602

Bartolomé, E., Florensa, I., Bosch, M. y Gascón, J. (2018). A «study and research path» enriching the learning of mechanical engineering. European Journal of Engineering Education, 44(3), 330-346. https://doi.org/10.1080/03043797.2018.1490699

Blum, W., Galbraith, P. L., Henn, H. W. y Niss, M. (Eds.) (2007). Modelling and applications in mathematics education. The 14 ICMI study, new ICMI study series. Springer. https://doi.org/10.1007/978-0-387-29822-1

Bosch, M., Hausberger, T., Hochmuth, R., Kondratieva, M. y Winslow, C. (2021). External didactic transposition in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 7, 140-162. https://doi.org/10.1007/s40753-020-00132-7

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en didactique des mathématiques, 19(2), 221-266. https://revue-rdm.com/1999/l-analy

se-des-pratiques/

Chevallard, Y. (2004). Vers une didactique de la codisciplinarité. Notes de une épistémologie scolaire. http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=45

Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: a case for an oncoming counter paradigm. En S. J. Cho (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp. 173-187). Springer. https://doi.org/10.1007/978-3-319-12688-3

Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: an attempt at a principled approach. Hiroshima Journal of Mathematics Education, 12, 71-114.

Cooper, M., Corley, L. M. y Underwood, S. M. (2013). An investigation of college chemistry students’ understanding of structure–property relationships. Journal of Research in Science Teaching, 50(6), 699-721. https://doi.org/10.1002/tea.21093

Cooper, M., Underwood, S. y Hilley, C. (2012). Development and validation of the implicit information from Lewis structures instrument (IILSI): do students connect structures with properties? Chemistry Education Research and Practice, 13, 195-200. https://doi.org/10.1039/C2RP00010E

Costa, V., Arlego, M. y Otero, R. (2015). Las dialécticas en un recorrido de estudio e investigación para la enseñanza del cálculo vectorial en la universidad. Revista de Formación e Innovación Educativa Universitaria, 8(3), 146-161.

Dirección General de Educación Superior Tecnológica (2012). Modelo educativo para el siglo xxi. Formación y desarrollo de competencias profesionales. http://www.dgest.gob.mx/director-general/mode

lo-educativo-para-el-siglo-xxi-formacion-y-desarrollo-de-competencias-profesionales-dp2

Duarte, M. H., Freitas, M. P. y Nunes, C. (2017). QSPR modeling is able to predict retention times of fatty acids using simple molecular descriptors. International Journal of Quantitative Structure-Property Relationships, 2(1), 35-43. https://doi.org/10.4018/IJQSPR.2017010103

Elizalde, I. y Rosas, A. Miguel. (2016). Modelación directa e inversa en la formación del ingeniero químico. Lectorum.

Erduran, S. y Duschl, R. A. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40(1), 105-138. https://doi.org/10.1080/03057260408560204

Favre, E., Falk, V., Roizard, C. y Schaer, E. (2008). Trends in chemical engineering education: Process, product and sustainable chemical engineering challenges. Education for Chemical Engineers, 3, e22-e27. https://doi.org/10.1016/j.ece.2007.12.002

Florensa, I., Bosch, M., Gascón, J. y Winsløw, C. (2018). Study and research paths: a new tool for design and management of project based learning in engineering. International Journal of Engineering Education, 34(6), 1848-1862.

Frejd, P. y Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91, 11-35. https://doi.org/10.1007/s10649-015-9654-7

Galindo, N. (2019). Diseño de una unidad de aprendizaje sobre relaciones cuantitativas de estructura-actividad (QSAR) en la carrera de ingeniería química [Tesis de maestría]. CICATA-IPN. https://www.cicata.ipn.mx/assets/files/cicata/ProME/docs/tesis/tesis_maestria/2019/galindo_2019.pdf

García, F. J., Barquero, B., Florensa, I. y Bosch, M. (2019). Diseño de tareas en el marco de la teoría antropológica de lo didáctico. Avances de Investigación en Educación Matemática, 15, 75-94. https://doi.org/10.35763/aiem.v0i15.267

Gascón, J. y Nicolás, P. (2022). ATD on relationships between research and teaching. The case of a didactic problem concerning real numbers. En Y. Chevallard, B. Barquero, M. Bosch, I. Florensa, J. Gascón, P. Nicolás y N. Ruiz-Munzón (Eds.), Advances in the Anthropological Theory of the Didactic (pp. 125-138). Birkhäuser. https://doi.org/10.1007/978-3-030-76791-4_2

Gilbert, J. K. y Treagust, D. (eds). (2009). Multiple representations in chemical education. Models and modelling in science education (vol. 4). Springer. https://doi.org/10.1007/978-1-4020-8872-8

Golbraikh, A., Wang, X., Zhu, H. y Tropsha, A. (2012). Predictive QSAR modeling: methods and applications in drug discovery and chemical risk assessment. En J. Leszczynski (Ed.), Handbook of computational chemistry (pp. 1311-1342). Springer. https://doi.org/10.1007/978-94-007-0711-5_37

Hestenes, D. (2010). Modeling theory for math and science education. En R. Lesh, P. Galbraith, C. Haines y A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 13-41). Springer. https://doi.org/10.1007/978-1-4419-0561-1_3

Lesh, R., Galbraith, P., Haines, C. y Hurford, A. (Eds.) (2010). Modelling students’ mathematical modelling competencies ICTMA 13. Springer. https://doi.org/10.1007/978-1-4419-0561-1

Macias, M. y Romo, A. (2014). Metodología para el diseño de actividades didácticas basadas en modelación matemática. Acta Latinoamericana de Matemática Educativa, 27, 461-469.

Organisation for Economic Co-operation and Development (2007, marzo). Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] models. https://www.oecd-ilibrary.org/docserver/9789264085442-en.pdf?expires=1679930840&id=id&accname=guest&checksum=E9E75CAAF5AD3D2C5828C1EF8506FEDB

Pollak, H. (2007). Mathematical modelling –a conversation with Henry Pollak. En W. Blum, L. P. Galbraith, W. H. Henn y M. Niss (Eds.), Modelling and applications in mathematics education. The 14 ICMI study (pp. 109-120). Springer. https://doi.org/10.1007/978-0-387-29822-1_9

Raies, A. y Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. Computational Molecular Science, 6, 147-172. https://doi.org/10.1002/wcms.1240

Reinhard, M. y Drefahl, A. (1998). Handbook for estimating physicochemical properties of organic compounds. John Wiley & Sons.

Romo, A. y Artigue, M. (2023). Challenges for research on tertiary mathematics education for non-specialists: Where are we and where are we to go? En R. Biehler, M. Liebendörfer, G. Gueudet, C. Rasmussen y C. Winsløw (Eds.), Practice-oriented research in tertiary mathematics education (pp. 535-557). Springer. https://doi.org/10.1007/978-3-031-14175-1_26

Roy, K., Kar, S. y Das R. N. (2015). A primer on QSAR/QSPR modelling. Springer. https://doi.org/10.1007/978-3-319-17281-1

Siero González, L. R., Echavarría Cepeda, L. A., Romo Vázquez, A. y Navarro Torres, J. (2022). Design of a rehabilitation device for thrombosis: a mathematical modelling activity in the training of engineers. Avances de investigación en educación matemática, 21, 107-134. https://doi.org/10.35763/aiem21.4258

Talanquer, V. (2018). Progressions in reasoning about structure-property relationships. Chemistry Education Research and Practice, 19(4), 998-1009. https://doi.org/10.1039/C7RP00187H

Tecnológico Nacional de México (2016). Retícula ingeniería química [página web]. https://www.tecnm.mx/pdf/reticula/Reticula%20Ingenieria%20Quimica.pdf

Todeschini, R. y Consonni, V. (2009). Molecular descriptors for chemoinformatics volume II: appendices, references. Wiley-Vch Verlag. https://doi.org/10.1002/9783527628766

Universidad Juárez del Estado de Durango (2023). Ingeniero químico en alimentos. Sede Gómez Palacio. Plan de estudios [página web]. https://www.ujed.mx/oferta-educativa/ingeniero-quimico-en

-alimentos-gp/plan-de-estudios

Vázquez, R., Romo, A., Romo-Vázquez, R. y Trigueros, M. (2016). La separación ciega de fuentes: un puente entre el álgebra lineal y el análisis de señales. Educación Matemática, 28(2), 31-57. https://doi.org/10.24844/EM2802.02

Published

05-06-2023

Downloads

Download data is not yet available.