Introducing discrepant experiments for understanding Bernoulli’s principle in the classroom
Abstract
This paper presents an investigation in general physics teaching in which the Bernoulli hydrodynamic equation is taught in three courses of engineering students with an active method that incorporates the use of discrepant experiments. To determine the learning of such an equation, we used the pre/post-test with a test on the equation previously validated in the framework of the classical theory of the test. We analyzed the learning of the equation with the Hake gain indicating the modification of the method. Bao’s evolution vectors are used to reveal the conceptual change in the operated and control population. The active method has been found to have higher returns than the traditional method at more than double the value. Furthermore, the Bao vectors reveal the group with active method had a better conceptual evolution than the control group.Keywords
Bernoulli hydrodynamic equation, Discrepant experiments, Normalized gain, Bao vectors, Physics teachingReferences
Alomá, E. y Malaver, M. (2006). Theoretical Comparison of Average Normalized Gain Calculations. American Journal of Physics, 74(10), 917-922. https://doi.org/10.1119/1.221363
Anderson, O. R. y Boticelli, S. (1990). Quantitative analysis of control organization in some Biology text varying in textual composition. Science Education, 74(2), 167-172. https://doi.org/10.22201/fq.18708404e.2005.1.66143
Bao, L. (2006). Theoretical Comparison of Average Normalized Gain Calculations. American Journal of Physics, 74(10), 917-922. https://doi.org/10.1119/1.2213632
Bao, L. y Redish, E. (2001). Concentration analysis: A quantitative assessment of student states. American Journal of Physics, 69(S45), 917-922. https://doi.org/10.1119/1.1371253
Bao, L. y Redish, E. (2004). Educational Assessment and Underlying Models of Cognition. In The Scholarship of Teaching and Learning in Higher Education. Indiana: University Press.
Bao, L. y Redish, E. (2006). Model Analysis: Assessing the Dynamics of Student Learning. Physics Review Special Topics-Physics Education Research, 2, 010103. https://doi.org/10.1103/PhysRevSTPER.2.010103
Barbosa, L. H. (2008). Los experimentos discrepantes en el aprendizaje activo de la física. Latin-American Journal of Physics Education, 2(3), 246-252.
Barbosa, L. H., Mora, C., Talero, P. y Organista, J. (2011). El soplador Mágico: Un experimento discrepante en el aprendizaje de la ley de presión hidrodinámica de Bernoulli. Revista Brasileira de Ensino de Física, 33, 4309. https://doi.org/10.1590/S1806-11172011000400009
Barbosa, L. H. (2013). Construcción, validación y calibración de un instrumento de medida del aprendizaje: Test de Ley de Bernoulli. Revista Educación en Ingeniería, 8(15), 24-37. https://doi.org/10.26507/rei.v8n15.301
Barbosa, L. H. y Mora-Ley, C. (2013). Montajes de ExD para incorporar la ley de presión hidrodinámica de Bernoulli en ambientes escolares de Ingeniería. Latin-American Journal of Physics Education, 7(3), 399-406.
Bauman, R. (2000). An alternative derivation of Bernoulli’s principle. American Journal of Physics, 68(3), 288-289. https://doi.org/10.1119/1.19423
Bauman, R. y Schwaneberg, R. (1994). Interpretation of Bernoulli’s Equation. Physics Teacher, 32, 478-488. https://doi.org/10.1119/1.2344087
Brown, P. F. y Friedrichsen P. (2011). Teaching Bernoulli’s principle through demonstrations. Science Activities: Classroom Projects, 48(2), 65-70. https://doi.org/10.1080/00368121.2010.528075
Guillen, M. (2010). Cinco ecuaciones que cambiaron el mundo. El poder y la oculta belleza de las matemáticas. México: Drokerz.
Hake, R. (1998). Interactive-Engagement versus Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses. American Journal of Physics, 66(64), 64-74. https://doi.org/10.1119/1.18809
Hestenes, D. Wells, D. y Swackhammer, G. (1992). Force concept inventory. Physics Teacher, 30, 3, 141-151. https://doi.org/10.1119/1.2343497
Kamela, M. (2007). Thinking about Bernoulli. The Physics Teacher, 45, 379-381. https://doi.org/10.1119/1.2840970
Liem, T. (1982). Invitations to Science Inquiry. California, USA: Science Inquiry Enterprises, Chino Hill.
Martin, D. (1983). Misunderstanding Bernoulli. The Physics Teacher, 21, 37. https://doi.org/10.1119/1.2341184
Mc Dermott, L. y Redish, E. F. (1999). Resource Letter: PER-1: Physics Education Research. American Journal of Physics, 67, 755-767. https://doi.org/10.1119/1.19122
Peralta, R. (2007). Fluidos: Apellido de los líquidos y los gases. México: Fondo de Cultura Económica.
Redish, E. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics, 62, 796-803. http://dx.doi.org/10.1119/1.17461
Sokoloff, D. R. (2006). Active Learning in Optics and Photonics: Training Manual. Unesco-ICTP.
Sokoloff, D. R. y Thornton, R. K. (1997). Using interactive lecture demonstrations to create an active learning environment. Physics Teacher, 35, 340. http://dx.doi.org/10.1119/1.2344715
Vega, F. G. (2017). Dificultades conceptuales para la comprensión de la ecuación de Bernoulli. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(2), 339-352. http://dx.doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i2.04
Weltner, K. (2015). Misinterpretations of Bernoulli’s law. https://www.researchgate.net/publication/303974495_Misinterpretations_of_Bernoulli's_Law
Published
Downloads
Copyright (c) 2021 Luis Hernando Barbosa

This work is licensed under a Creative Commons Attribution 4.0 International License.