A Teaching Experience With a Content-Specific Open-Ended Task
Abstract
We report on a teaching experience that had two objectives: to assess the mathematical potential of an open-ended task and to explore whether working with it promotes the emergence of the triangle inequality property in a geometric context. A standard task from a textbook was modified, and the productions of 116 secondary school students (aged between 13 and 15) were analyzed basing on the following criteria: semiotic representations, numerical sets used, ways of indicating the multiplicity of solutions, the case of the equilateral triangle, strategies used, and the emergence of the triangle inequality property. The results show that the emergence of this property is conditioned by the semiotic representation registers employed. Based on the students’ work, it is concluded that the task has high mathematical potential and promotes flexibility.
Keywords
Open-ended mathematical tasks, Flexibility, Representation registers, Triangle inequalityReferences
Barbosa, J. C. & de Oliveira, A. M. (2013). Collaborative groups and their conflicts in designing tasks. En C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 541-548). http://hal.archives-ouvertes.fr/hal-00834054
Bernabeu, M., Moreno, M. y Llinares, S. (2022). Cambios en la comprensión de las relaciones entre polígonos en estudiantes de 8-9 años. Enseñanza de las ciencias, 40(2), 49-70. https://doi.org/10.5565/rev/ensciencias.3208
Da Costa, S., y Scorza, V. (2011). Matemática 1. Prácticas Santillana. Ediciones Santillana S. A.
Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de RSME, 9(1), 143-168. https://gaceta.rsme.es/vernumero.php?id=61
Elia, I. V., den Heuvel-Panhuizen, M. y Kolovou, A. (2009). Exploring strategy use and strategy flexibility in non-routine problem solving by primary school high achievers in mathematics. ZDM, 41, 605-618. https://doi.org/10.1007/s11858-009-0184-6
Fernández, C., Ivars, P. y Llinares, S. (2019). Principles in the design of tasks to support pre-service teachers’ noticing enhancement. En M. Graven, H. Venkat, A. Essien y P. Vale (Eds.), Proceedings of the 43rd Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 408-415). PME.
Grossman, P. (2011). Framework for Teaching Practice: A Brief History of an Idea. Teachers College Record, 113(12), 2836-2843. https://doi.org/10.1177/016146811111301205
Klein, S., y Leikin, R. (2020). Opening mathematical problems for posing open mathematical
tasks: what do teachers do and feel? Educational Studies in Mathematics, 105(3), 349-365. https://doi.org/10.1007/s10649-020-09983-y
Klein, S. y Leikin, R. (2023). Open-ended tasks which are not completely open: Challenges and creativity. En M. Ayalon, B. Koichu, R. Leikin, L. Rubel y M. Tabach, Proceeding of the 46th Conference of the International Group for the Psychology of Mathematics Education (vol. 3). University of Haifa, Israel: PME
Leikin, R. (2014). Challenging Mathematics with Multiple Solution Tasks and Mathematical Investigations in Geometry. En Y. Li, E. A. Silver, S. Li (Eds.), Transforming mathematics instruction. Multiple approaches and practices. Springer. https://doi.org/10.1007/978-3-319-04993-9_5
Leikin, R. (2018). Openness and constraints associated with creativity-directed activities in mathematics for all students. En N. Amado, S. Carreira y K. Jones (Eds), Broadening the Scope of Research on Mathematical Problem Solving. A Focus on Technology, Creativity and Affect. Springer. https://doi.org/10.1007/978-3-319-99861-9
National Council of Teachers of Mathematics (NCTM) (2000). Principles and Standards for School Mathematics. https://www.rainierchristian.org/NCTM_principles-and-standards-for-school-mathematics.pdf
Pagés, D., y Scorza, V. (2022). Las tareas de alta demanda cognitiva. Cinco prácticas para implementarlas en la clase de matemática. En C. Ochoviet y M. Olave (Eds), Diseño de tareas y prácticas de la enseñanza de la matemática (pp. 55-72). Contexto. ISSN/ISBN: 978-9915-9319-4-4
Stein, M., Engle, R., Smith, M. y Hughes, E. (2008). Orchestrating Productive Mathematical Discussions: Five Practices for Helping Teachers Move Beyond Show and Tell. Mathematical Thinking and Learning, 10(4), 313-340. https://doi.org/10.1080/10986060802229675
Stein, M. K., Smith, M. S., Henningsen, M. A. y Silver, E. A. (2009). Implementing Standards-based mathematics instruction: A casebook for professional development (2nd edition). Teachers College Press. Kindle version.
Sullivan, P., Jorgensen, R. y Mousley, J. (2011). Using a Model for Planning and Teaching Lessons as Part of Mathematics Teacher Education. En O. Zaslavsky y P. Sullivan (Eds.), Constructing Knowledge for Teaching Secondary Mathematics, Mathematics Teacher Education 6, https://doi.org/10.1007/978-0-387-09812-8
Sullivan, P., Clarke, D. y Clarke, B. (2013). Teaching with Tasks for Effective Mathematics Learning. Mathematics Teacher Education. https://doi.org/10.1007/978-1-4614-4681-1
Watson, A. y Ohtani, M. (Eds.) (2015). Task design in mathematics education. Springer. https://doi.org/10.1007/978-3-319-09629-2
Zaslavsky, O. (1995). Open-ended tasks as a trigger for mathematics teachers’ professional development. For the Learning of Mathematics, 15(3), 15-20.
Zaslavsky, O. (2008). Attention to similarities and differences: A fundamental principle for task design and implementation in mathematics education. Invited presentation at the Topic Study Group (TSG34) on Research and Development on Task Design and Analysis, the 11th International Congress on Mathematics Education (ICME-11), Monterrey, México.
Zaslavsky, O. y Sullivan, P. (2011). Setting the Stage: A Conceptual Framework for Examining and Developing Tasks for Mathematics Teacher Education. En O. Zaslavsky y P. Sullivan (Eds.), Constructing Knowledge for Teaching Secondary Mathematics, Mathematics Teacher Education (pp. 1-22). https://doi.org/10.1007/978-0-387-09812-8
Published
Downloads
Copyright (c) 2025 Daniela Pagés Rostán, María Verónica Scorza Arló

This work is licensed under a Creative Commons Attribution 4.0 International License.