Una secuencia de actividades para desarrollar la visualización usando un videojuego

Autores/as

Resumen

Este artículo describe una de secuencia de actividades para trabajar la visualización con alumnos de cuarto de Educación Primaria a partir del contexto promovido por un videojuego tipo puzle tridimensional. La secuencia se inicia jugando libremente para identificar los retos que propone el juego. A continuación, se proponen actividades para identificar aspectos claves del videojuego y generar conocimientos geométricos sobre visualización con el cual poder diseñar niveles del videojuego. En el artículo se presenta cada actividad que conforma la secuencia, su fundamentación y la validación de los aprendizajes promovidos después de su aplicación. Estos resultados ponen de manifiesto las posibilidades del videojuego utilizado y las actividades que lo acompañan para relacionar diferentes formas de visualización de objetos tridimensionales.

Palabras clave

Visualización, Videojuegos, Educación Primaria, Resolución de problemas

Citas

Albarracín, L. (2015). Videojuegos. Jugando con el espacio y el tiempo. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas, 80, 79-85.

Albarracín, L., Hernández-Sabaté, A. y Gorgorió, N. (2017). Los videojuegos como objeto de investigación incipiente en Educación Matemática. Modelling in Science Education and Learning, 10(1), 53-72. https://doi.org/10.4995/msel.2017.6081

Ben-Chaim, D., Lappan, G. y Houang, R. T. (1988). The effect of instruction on spatial visualization skills of middle school boys and girls. American Educational Research Journal, 25(1), 51-71. https://doi.org/10.3102/00028312025001051

Ben-Chaim, D., Lappan, G. y Houang, R. T. (1989). Adolescents’ ability to communicate spatial information: Analysing and effecting students’ performance. Educational Studies in Mathematics, 20, 121-146. https://doi.org/10.1007/BF00579459

Berthelot, R. y Salin, M. H. (1998). The role of pupils’ spatial knowledge in the elementary teaching of geometry. En C. Mammana y V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st Century (pp. 71-78). Dordrecht, Países Bajos: Kluwer.

Bishop, A. J. (1988). A review of research on visualisation in mathematics education. En A. Borbas (Ed.), Proceedings of the 12th Annual Conference of the International Group for the Psychology of Mathematics Education (pp. 170-176). Veszprem, Hungría: PME.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H. y Krathwohl, D. R. (1956). Taxonomy of educational objectives: the classification of educational goals. Nueva York: David McKay Company.

Carbonneau, K. J., Marley, S. C. y Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380-400. https://doi.org/10.1037/a0031084

Charsky, D. (2010). From edutainment to serious games: A change in the use of game characteristics. Games and Culture, 5(2), 177-198. https://doi.org/10.1177/1555412009354727

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T. y Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers and Education, 59(2), 661-686. https://doi.org/10.1016/j.compedu.2012.03.004

Dickey, M. D. (2005). Engaging by design: How engagement strategies in popular computer and video games can inform instructional design. Educational Technology Research and Development, 53(2), 67-83. https://doi.org/10.1007/BF02504866

Drijvers, P. (2013). Digital technology in mathematics education: why it works (or doesn’t). PNA, 8(1), 1-20. http://hdl.handle.net/10481/27880

Duval, R. (1998). Geometry from a cognitive point of view. En C. Mammana y V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century: An ICMI study. Dordrecht: Kluwer.

Feng, J., Spence, I. y Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological science, 18(10), 850-855. https://doi.org/10.1111/j.1467-9280.2007.01990.x

Fischbein, E. y Nachlieli, T. (1998). Concepts and figures in geometrical reasoning. International Journal of Science Education, 20(10), 1193-1211. https://doi.org/10.1080/0950069980201003

Foster, S. R., Esper, S. y Griswold, W. G. (2013). From competition to metacognition: designing diverse, sustainable educational games. En W. E. Mackay, S. Brewster y S. Bodker (Eds.), CHI’13 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 99-108). Nueva York: ACM.

Frejd, P. y Ärlebäck, J. B. (2017). Initial results of an intervention using a mobile game app to simulate a pandemic outbreak. En G. Stillman, W. Blum y G. Kaiser (Eds.), Mathematical modelling and applications (pp. 517-527). Cham: Springer.

Goldenberg, E., Lewis, P. y O’Keefe, J. (1992). Dynamic representation and the development of a process understanding of function. En G. Harel y E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 235-260). Washington: Mathematical Association of America.

Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: in search of a framework. En L. Puig y A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (vol. 1, pp. 3-19). Valencia, España: Universidad de Valencia.

Gutiérrez, J., Arnau, D. y González, J. A. (2015). Un estudio exploratorio sobre el uso de DragonBox Algebra© como una herramienta para la enseñanza de la resolución de ecuaciones. Ensayos: Revista de la Facultad de Educación de Albacete, 30(1), 33-44. https://doi.org/10.18239/ensayos.v30i1.738

Gutiérrez, A. y Jaime, A. (2012). Reflexiones sobre la enseñanza de la geometría en primaria y secundaria. Tecné, Episteme y Didaxis: TED, 32, 55-70. https://doi.org/10.17227/ted.num32-1859

Hamlen, K. R. (2011). Children’s choices and strategies in video games. Computers in Human Behavior, 27(1), 532-539. https://doi.org/10.1016/j.chb.2010.10.001

Harel, G. y Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. En A. Schoenfeld, J. Kaput y E. Dubinsky (Eds.), Research on Collegiate Mathematics Education (vol. 1, pp. 234-283). Providence: American Mathematical Society.

Hernández-Sabaté, A., Joanpere, M., Gorgorió, N. y Albarracín, L. (2015). Mathematics learning opportunities when playing a tower defense game. International Journal of Serious Games, 2(4), 57-71. https://doi.org/10.17083/ijsg.v2i4.82

Ke, F. (2008). A case study of computer gaming for math: Engaged learning from gameplay? Computers & Education, 51(4), 1609-1620. https://doi.org/10.1016/j.compedu.2008.03.003

Ke, F. (2009). A qualitative meta-analysis of computer games as learning tools. En R. E. Ferdig (Ed.), Handbook of research on effective electronic gaming in education (pp. 1-32). Hershey: IGI Global.

Kovacevic, N. (2017). Spatial reasoning in mathematics. En Z. Kolar-Begovic, R. Kolar-Super y L. Jukic Matic (Eds.), Mathematics education as a science and a profession (pp. 45-65). Osijek: Element.

Ma, H. L., Wu, D., Chen, J. W. y Hsieh, K. J. (2009). Mithelmore’s development stages of the right rectangular prisms of elementary school students in Taiwan. En M. Tzekaki, M. Kaldrimidou y H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (vol. 4, pp. 57-64). Tesalónica: PME.

McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889

Németh, B. (2007). Measurement of the development of spatial ability by Mental Cutting Test. Annales Mathematicae et Informaticae, 34, 123-128.

Parzysz, B. (1988). «Knowing» vs «seeing». Problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19(1), 79-92. https://doi.org/10.1007/BF00428386

Pittalis, M. y Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191-212. https://doi.org/10.1007/s10649-010-9251-8

Prensky, M. (2001). Digital game-based learning. Nueva York: McGraw-Hill.

Presmeg, N. C. (1986). Visualisation and mathematical giftedness. Educational Studies in Mathematics, 17(3), 297-311. https://doi.org/10.1007/BF00305075

Pretelín-Ricárdez, A. y Sacristán, A. I. (2015). Videogame construction by engineering students for understanding modelling processes: The case of simulating water behaviour. Informatics in Education, 14(2), 265-277. https://doi.org/10.15388/infedu.2015.15

Revina, S., Zulkardi, Z., Darmawijoyo, D. y Galen, F. V. (2014). Spatial visualization tasks to support students’ spatial structuring in learning volume measurement. Journal on Mathematics Education, 2(2), 127-146. http://doi.org/10.22342/jme.2.2.745.127-146

Risma, D. A., Putri, R. I. I. y Hartono, Y. (2013). On developing students’ spatial visualisation ability. International Education Studies, 6(9), 1-12. http://dx.doi.org/10.5539/ies.v6n9p1

Rosas, R., Nussbaum, M., Cumsille, P., Marianov, V., Correa, M., Flores, P., Grau, V., Lagos, F., López, X., López, V., Rodríguez, P. y Salinas, M. (2003). Beyond Nintendo: Design and assessment of educational video games for first and second grade students. Computers and Education, 40(1), 71-94. https://doi.org/10.1016/S0360-1315(02)00099-4

Salen, K. y Zimmerman, E. (2004). Rules of play: Game design fundamentals. Cambridge: MIT Press.

Tall, D. O. y West, B. (1986). Graphic Insight into Calculus and Differential Equations. En G. Howson y J. P. Kahane (Eds.), The influence of computers and informatics on mathematics and its teaching (pp. 107-119). Cambridge: Cambridge University Press.

Vigotsky, L. S. y Cole, M. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona: Crítica.

Zazkis, R., Dubinsky, E. y Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students’ understanding of the group D4. Journal for Research in Mathematics Education, 27(4), 435-457. https://doi.org/10.2307/749876

Biografía del autor/a

Lluís Albarracín, Universitat Autònoma de Barcelona

Professor lector Serra Húnter Departament de Didàctica de la Matemàtica i les Ciències Experimentals Universitat Autònoma de Barcelona

Publicado

03-06-2021

Descargas

Los datos de descargas todavía no están disponibles.